首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 203 毫秒

1.  基于Tri-training算法的构造性学习方法  
   吴涛  李萍  王允强《计算机工程》,2012年第38卷第6期
   构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri- training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将已标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。    

2.  一种协同半监督分类算法Co-S3OM  被引次数:1
   赵建华  李伟华《计算机应用研究》,2013年第30卷第11期
   为了提高半监督分类的有效性, 提出了一种基于SOM神经网络和协同训练的半监督分类算法Co-S3OM (coordination semi-supervised SOM)。将有限的有标记样本分为无重复的三个均等的训练集, 分别使用改进的监督SSOM算法(supervised SOM)训练三个单分类器, 通过三个单分类器共同投票的方法挖掘未标记样本中的隐含信息, 扩大有标记样本的数量, 依次扩充单分类器训练集, 生成最终的分类器。最后选取UCI数据集进行实验, 结果表明Co-S3OM具有较高的标记率和分类率。    

3.  基于Tri-Training半监督分类算法的研究  
   张雁  吕丹桔  吴保国《计算机技术与发展》,2013年第23卷第7期
   在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点.文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析.实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点.    

4.  基于Tri-Training半监督分类算法的研究  
   张雁  吕丹桔  吴保国《微机发展》,2013年第7期
   在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析。实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点。    

5.  主动协同半监督粗糙集分类模型  被引次数:1
   高灿  苗夺谦  张志飞  刘财辉《模式识别与人工智能》,2012年第25卷第5期
   粗糙集理论是一种有监督学习模型,一般需要适量有标记的数据来训练分类器.但现实一些问题往往存在大量无标记的数据,而有标记数据由于标记代价过大较为稀少.文中结合主动学习和协同训练理论,提出一种可有效利用无标记数据提升分类性能的半监督粗糙集模型.该模型利用半监督属性约简算法提取两个差异性较大的约简构造基分类器,然后基于主动学习思想在无标记数据中选择两分类器分歧较大的样本进行人工标注,并将更新后的分类器交互协同学习.UCI数据集实验对比分析表明,该模型能明显提高分类学习性能,甚至能达到数据集的最优值.    

6.  基于Tri-training的主动学习算法  
   张雁  吴保国  吕丹桔  林英《计算机工程》,2014年第6期
   半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数据集和遥感数据,在不同标记训练样本比例下进行实验,结果表明,该算法在标记样本数较少的情况下能取得较好的效果。将主动学习与Tri-training算法相结合,是提高分类性能和泛化性的有效途径。    

7.  半监督学习的Co-training算法研究  
   刘蓉《电脑编程技巧与维护》,2010年第14期
   介绍一种基于半监督学习的协同训练(Co-training)分类算法,当可用的训练样本比较少时,使用传统的方法进行分类,如决策树分类,将无法得到用户满意的结果,而且它们需要大量的标记样本。事实上,获取有标签的样本的代价是相当昂贵的。于是,使用较少的已标记样本和大量的无标记样本进行协同训练的半监督学习,成为研究者首选。    

8.  一种自适应的Tri-Training半监督算法  
   彭雅琴  宫宁生《计算机系统应用》,2016年第25卷第8期
   Tri-Training算法是半监督算法的一种,在学习过程中容易错误标注无标记样本,从而降低分类性能,为此提出一种ADP-Tri-Training(Adaptive Tri-Training)算法,改进协同工作方式,根据几何中心设置分类器组成,然后应用模糊数学理论将多个独立的分类器组合,使得算法可以在多因素下综合评价样本,并在此基础上引入遗传算法动态设置组合权重以适应于具体的样本集,从而尽可能降低样本标注的错误率,多个实验结果表明ADP-Tri-Training算法具有更好的分类性能.    

9.  基于半监督学习和支持向量机的煤与瓦斯突出预测研究  
   孙云霄  方健  马小平《工矿自动化》,2012年第38卷第11期
   针对支持向量机要求输入向量为已标记样本,而实际应用中已标记样本很难获取的问题,提出将半监督学习和支持向量机结合的煤与瓦斯突出预测方法;介绍了采用SVM预测煤与瓦斯突出的流程及其输入向量的选择;对半监督学习中的协同训练算法进行了改进:在同一属性集上训练2个不同分类器SVM和KNN,将2个分类器标记一致的样本加入训练集,从而充分利用未标记样本不断补充信息,更新训练集标记样本,达到强化训练集的目的。测试结果表明,改进后的算法比单独的支持向量机预测方法准确率更高。    

10.  一种增强差异性的半监督协同分类算法  
   于重重  商利利  谭励  涂序彦  杨扬  王竞燕《电子学报》,2013年第41卷第1期
   半监督学习中的Tri-Taining算法打破了以往算法对充分冗余视图的限制,并通过利用三个分类器处理标记置信度和样本预测问题提高了标记效率.为进一步增强协同训练过程中分类器之间的差异性以提高性能,本文在其理论基础上提出了一种增强差异性的半监督协同分类算法.该算法利用三个不同的分类器进行学习;考虑到分类模型在更新过程中,可能会因随机抽样导致性能恶化,该算法利用基于标记类别的分层抽样法来对已标记样本集进行抽样,并通过基于分类正确率的加权投票法实现了分类器的集成,提高了预测准确率.本文通过实验对所提出算法与Tri-Training算法做了性能比较,实验结果表明本文所提出的方法在分类问题上具有较好的性能,验证了该算法的有效性和可行性.    

11.  基于Tri-training半监督学习的JPEG隐密分析方法  被引次数:2
   郭艳卿  孔祥维  尤新刚  何德全《通信学报》,2008年第29卷第10期
   提出了一种基于半监督学习机制的JPEG隐密分析方法.通过三类DCT域统计特征和多超球面OC-SVM算法构建三种独立的隐密分析方法,并以Tri-training学习方式迭代地对未标记图像样本进行标记,来扩充原训练样本集,进而可以利用大量未标记属性的图像样本提高隐密分析算法的泛化能力.由JSteg、F5、Outguess、MB1含密图像与载体图像所组成的混合图像库上的仿真实验结果验证了此方法的有效性.    

12.  基于Tri—Training算法的数据编辑技术  
   张雁  林英  吕丹桔《计算机与数字工程》,2013年第41卷第10期
   Tri-Training是一种半监督学习算法,在少量标记数据下,通过三个不同的分类器,从未标记样本中采样并标记新的训练数据,作为各分类器训练数据的有效补充。但由于错误标记样本的存在,引入了噪音数据,降低了分类的性能。论文在Tri—Training算法中分别采用DE-KNN,DE-BKNN和DE-NED三种数据编辑技术,识别移除误标记的数据。通过对六组UCI数据集的实验,分析结果表明,编辑技术的引入是有效的,三种方法的使用在一定程度上提升了Tri-Training算法的分类性能,尤其是DE-NED方法更为显著。    

13.  基于Tri-training的评价单元识别  
   蒋 润  顾春华  阮 彤《计算机应用》,2014年第4期
   评价单元的识别是情感倾向性分析中重要的一步,但由于标注语料匮乏,大多数研究集中在用人工构建规则、模板来识别评价单元的方法上。为了减轻标注训练语料的工作,同时进一步挖掘未标记样本的信息,提出一种基于协同训练机制的评价单元识别算法,以利用少量的已标记样本和大量的未标记样本来提高识别性能。该算法利用Tri-training的思想,将支持向量机(SVM)、最大熵(MaxEnt)以及条件随机场(CRF)三个不同分类器组合成一个分类体系,对生成的评价单元候选集进行分类。将Tri-training的算法思想应用于实验来对比采用单一分类器的方法,结果表明,该算法能够有效地识别主观句中的评价单元。    

14.  基于在线半监督学习的故障诊断方法研究  
   尹刚  张英堂  李志宁  任国全  范红波《振动工程学报》,2012年第25卷第6期
   针对机械故障诊断中准确、完备的故障训练样本获取困难,而现有分类方法难以有效地发掘大量未标记故障样本中蕴含的有用信息,提出了一种基于在线半监督学习的故障诊断方法.该方法基于Tri-training算法将在线贯序极限学习机从监督学习模式扩展到半监督学习模式,利用少量不精确的标记样本构建初始分类器,并从大量未标记样本中在线扩充标记样本,对分类器进行增量式更新以提高其泛化性能.半监督基准数据试验结果表明,训练样本总数相同但标记样本数与未标记样本数比例不同时,所提算法得到的分类准确率相当且训练时间相差小于1.2倍.以柴油机8种工况的故障模式为对象进行试验验证,结果表明标记故障样本较少时,未标记故障样本的加入可使故障分类准确率提高5%~8%.    

15.  一种基于支持向量机的半监督分类方法  
   徐庆伶  汪西莉《计算机技术与发展》,2010年第20卷第10期
   如何有效利用海量的数据是当前机器学习面临的一个重要任务,传统的支持向量机是一种有监督的学习方法,需要大量有标记的样本进行训练,然而有标记样本的数量是十分有限的并且非常不易获取.结合Co-training算法与Tri-training算法的思想,给出了一种半监督SVM分类方法.该方法采用两个不同参数的SVM分类器对无标记样本进行标记,选取置信度高的样本加入到已标记样本集中.理论分析和计算机仿真结果都表明,文中算法能有效利用大量的无标记样本,并且无标记样本的加入能有效提高分类的正确率.    

16.  基于统计证据的半监督多分类器融合方法  
   孔志周  蔡自兴《控制与决策》,2011年第26卷第11期
   针对半监督学习中未标记示例导致性能下降的问题,提出一种新的协同训练算法LDL-tri-training.首先通过最小显著性差异(LSD)假设检验方法使得3个成员分类器两两之间具有显著性差异;然后采用D-S证据理论提高标注的稳定性;最后利用局部异常因子检测算法剔除误标记的噪声样本.实验表明,与其他方法相比,LDL-tri-training算法具有较高的分类精度和稳定性.    

17.  基于边缘增长的协同训练方法  
   刘紫阳  高占宝  李绪隆《仪器仪表学报》,2018年第3期
   为保证分类器间的差异性,同时提高子分类器自身性能,提出一种新的基于边缘样本增长的半监督集成学习方法——边缘协同森林(M-Co-Forest)。当从未标记样本中选取伪标记样本时,不仅考虑未标记样本的标记置信度,同时考虑未标记样本在已标记样本中的位置。只有处于当前分类器训练样本边缘且置信度高于预设阈值的样本才能被赋予伪标签,加入下一轮学习。同时,利用噪音学习理论指导训练过程,当伪标记样本的数量不足以进一步提升分类器性能时,停止迭代。多个UCI数据集和CTG数据上的实验结果表明M-Co-Forest的性能优于对比算法。    

18.  基于多学习器协同训练模型的人体行为识别方法  
   唐超  王文剑  李伟  李国斌  曹峰《软件学报》,2015年第26卷第11期
   人体行为识别是计算机视觉研究的热点问题,现有的行为识别方法都是基于监督学习框架.为了取得较好的识别效果,通常需要大量的有标记样本来建模.然而,获取有标记样本是一个费时又费力的工作.为了解决这个问题,对半监督学习中的协同训练算法进行改进,提出了一种基于多学习器协同训练模型的人体行为识别方法.这是一种基于半监督学习框架的识别算法.该方法首先通过基于Q统计量的学习器差异性度量选择算法来挑取出协同训练中基学习器集,在协同训练过程中,这些基学习器集对未标记样本进行标记;然后,采用了基于分类器成员委员会的标记近邻置信度计算公式来评估未标记样本的置信度,选取一定比例置信度较高的未标记样本加入到已标记的训练样本集并更新学习器来提升模型的泛化能力.为了评估算法的有效性,采用混合特征来表征人体行为,从而可以快速完成识别过程.实验结果表明,所提出的基于半监督学习的行为识别系统可以有效地辨识视频中的人体动作.    

19.  基于半监督协同训练的无人机对地目标跟踪  
   毛盾  邢昌风  满欣  付峰《激光与红外》,2017年第47卷第6期
   由于目标小、可区分性差,无人机对地目标跟踪较传统视频目标跟踪更容易丢失目标,提出一种基于l1图半监督协同训练的目标跟踪算法。算法首先提取样本的颜色和纹理特征构建两个充分冗余的视图,再以基于l1图的半监督学习算法取代传统协同训练中的监督学习方法构建单视图中的分类器,提高有限标记样本条件下的分类正确率,然后通过基于负类学习的协同训练算法协同更新两个视图的分类器,最后根据不同视图的相似度分布熵融合各分类器的分类结果实现目标跟踪。实验结果表明,该算法能够有效提高分类器的判别能力,具有良好的跟踪性能。    

20.  关系tri-training:利用无标记数据学习一阶规则  
   李艳娟  郭茂祖《计算机科学与探索》,2012年第5期
   针对目前归纳逻辑程序设计(inductive logic programming,ILP)系统要求训练数据充分且无法利用无标记数据的不足,提出了一种利用无标记数据学习一阶规则的算法——关系tri-training(relational-tri-training,R-tri-training)算法。该算法将基于命题逻辑表示的半监督学习算法tri-training的思想引入到基于一阶逻辑表示的ILP系统,在ILP框架下研究如何利用无标记样例信息辅助分类器训练。R-tri-training算法首先根据标记数据和背景知识初始化三个不同的ILP系统,然后迭代地用无标记样例对三个分类器进行精化,即如果两个分类器对一个无标记样例的标记结果一致,则在一定条件下该样例将被标记给另一个分类器作为新的训练样例。标准数据集上实验结果表明:R-tri-training能有效地利用无标记数据提高学习性能,且R-tri-training算法性能优于GILP(genetic inductive logic programming)、NFOIL、KFOIL和ALEPH。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号