首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以4-氨基丁酸(4-ABA)为修饰剂,制备了4-ABA修饰碳纳米管掺杂碳糊电极(P-4-ABA/CNTPE),研究了多巴胺(DA)在此修饰电极上的电化学行为,并用于DA的检测.在pH 2.0的BR缓冲溶液中,DA在P-4-ABA/CNTPE上产生一对灵敏的氧化还原峰.其氧化峰电流与DA的浓度在8.0×10-5 mol/L ~ 5.3× 10-7 mol/L范围内呈良好的线性关系,检测限为2.0×10-7 mol/L.所修饰电极具有较好的重现性、稳定性,对抗坏血酸(AA)和尿酸(UA)具有较好的抗干扰能力.应用于针剂以及人体实际尿样中多巴胺含量的测定,结果令人满意.  相似文献   

2.
这种传感器是在玻碳电极上修饰聚合精氨酸,在这种修饰电极上,多巴胺通过静电吸附聚集在电极表面,这种修饰电极对多巴胺有较强的电化学响应.在0.1 mol/LPBS缓冲溶液(pH7.5)中,DA在此修饰电极(PLA/GCE)上通过脉冲伏安法所产生的在 0.158 v(vs.SCE)的氧化峰,与其浓度在1.96×10.~1.38×10-7mol/L的范围内成线性,检测限为2.0×10-8mol/L(S/N=3).这种低成本的修饰电极简单.具有较高的灵敏度、选择性、稳定性,该法用于药剂中DA的测定.结果满意.  相似文献   

3.
本文研制了苯羟基乙酸修饰电极的制备及电化学性质。修饰电极对抗坏血酸(AA)的氧化还原有明显的催化作用,AA 的氧化电位负移了280mV。在 pH9.6BR 缓冲溶液中,以200mV 为工作电位,AA 在修饰电极上的响应电流与 AA 的浓度在3×10~(-6)10~(-3)mol/L 范围内呈良好的线性关系,检测下限为1.2×10~(-7)mol/L。在此电位下,多巴胺(DA)对 AA 的测定无干扰,电极的重现性良好,可用于实际样品 AA 的测定。  相似文献   

4.
构建了DNA-碳纳米管/聚苯胺复合膜修饰的玻碳电极,研究了抗坏血酸(AA)存在下多巴胺(DA)在该修饰电极上的电化学行为,发现DNA-碳纳米管/聚苯胺复合膜对多巴胺有明显的电催化作用.在0.1mol/L磷酸缓冲溶液(pH7.0)中,用方波伏安法(SWV)测得氧化峰电流与DA浓度在0.1~30×10-5mol/L范围内呈良好的线性关系.该修饰电极用于样品DA的检测,结果满意.  相似文献   

5.
研究了L-谷氨酸在玻碳电极上电化学聚合的条件及修饰电极的电化学特性,发现该聚合膜对多巴胺和肾上腺素的电氧化还原有显著的催化作用,在pH=6.0的磷酸盐缓冲溶液中,开路富集2.0 min后,用阴极脉冲伏安法对多巴胺和肾上腺素进行了测定,还原峰电流与多巴胺和肾上腺素的浓度分别呈良好的线性关系.多巴胺的线性范围:1.0×10-7~1.0×10-4mol/L,检出限(信噪比=3)为5.7×10-8mol/L.肾上腺素的线性范围:1.0×10-6~1.0×10-4mol/L,检测限(信噪比=3)6.6×10-7mol/L.对含有2.0×10-6mol/L多巴胺和2.0×10-5mol/L的肾上腺素的溶液进行了连续测定,结果发现8次连续测得多巴胺和肾上腺素浓度的相对标准偏差分别为1.74%和2.10%.  相似文献   

6.
采用电聚合的方法将银、L-半胱氨酸先后修饰到电极表面,制备了银、L-半胱氨酸修饰电极fPLC/Ag/GCE)。研究了多巴胺和抗坏血酸在该修饰电极上的电化学行为,构建的电极可实现对多巴胺和抗坏血酸的同时检测。实验表明:在扫速为120mV/s,pH=3.0的磷酸盐缓冲溶液(PBS)中,多巴胺产生一对氧化还原峰,其氧化峰和还原峰的电位分别为0.447V和0.409V;而抗坏血酸只产生一个明显的氧化峰,其峰电位为0.238V。多巴胺和抗坏血酸的AEpa=0.209V,不需要分离便可对两者进行同时检测。在最佳条件下,测定多巴胺和抗坏血酸的线性范围分别为1.00×10-6~2.50×10-4mol/L和7.50×10-6--1.00×10-3mol/L.检出限分别为5.0×10-7mol/L和2.5×10-6mol/L。该方法可用于多巴胺和抗坏血酸的同时测定。  相似文献   

7.
将制备的L-半胱氨卟啉铜(Ⅱ)(CuL)配合物自组装在Au电极表面,获得电化学苯酚传感器(CuL/AuCME)。在pH7.0的磷酸盐缓冲液中于-0.4~0.5V(vs.SCE)电位范围内有一对氧化还原峰,其峰电位分别为氧化峰电位Epa=90mV,还原峰电位Epc=-60mV。实验表明该电极上,苯酚可被CuL催化氧化,通过产物在电位0.1V下的电化学响应对苯酚进行测定,测定过程不需要再向体系中添加媒介体。该电极对苯酚表现出快速的响应(响应时间<10s)。传感器对苯酚的测定具有较宽的线性范围(5×10-7~2.5×10-4mol/l),检出限为2.0×10-7mol/l。测定了电极稳定性,将该电极用于地表水中苯酚含量检测,并与标准4-氨基安替比林分光光度法作了对照,结果满意。  相似文献   

8.
制备了聚硫堇(PTh)-磁性核,壳纳米粒子CoFe2O4/SiO2修饰电极。研究了神经递质多巴胺(DA)在该修饰电极上的电化学行为。实验表明,PTh—CoFe2O4/SiO2复合膜修饰电极对DA的电催化作用优于PTh修饰电极。在pH7.5的PBS中,DA在该修饰电极上的CV曲线于-0.16V和-0.22V处出现一对灵敏的氧化还原峰,峰电流显著增加。差分脉冲伏安法(DPV)氧化峰电流ips与DA浓度在1.2×10^-7-3.6×10^-5mol/L范围内呈良好的线性关系,线性回归方程ips(μA)=5.307c(μmol/L)+0.7891,r=0.9923,检出限为6.0×10^-8mol/L(S/N=3)。常见物质对DA的检测无干扰,DA注射液样品检测结果与中国药典2010版(二部)规定方法一致。  相似文献   

9.
将石墨烯作为基底材料修饰到玻碳电极上,并在其表面沉积Pt/Ni二元金属制得定量检测莱克多巴胺的电化学传感器。探讨了石墨烯表面金属合金沉积时间和样品富集时间等条件对传感器性能的影响。在最优条件下,测定莱克多巴胺的浓度线性范围为1.98×10-7~2.67×10-4mol/L,其检测限为6.66×10-8mol/L。实验结果表明:该传感器灵敏度高、稳定性好。  相似文献   

10.
本文通过电化学聚合法制备了聚对氨基苯甲酸化学修饰电极(P—pABA/CME),该电极对多巴胺有良好的催化氧化效果。探讨了该传感器对多巴胺的电催化氧化机理和实验条件对多巴胺响应的影响。将该修饰电极作为液相色谱电化学检测器用于测定多巴胺,灵敏度高,稳定性和重现性好,线性范围达3个数量级,检测限达2.0×10~(-8)mol/L(S/N=3)。以该电极测定帕金森病实验动物模型脑中的多巴胺,获得了满意的结果。  相似文献   

11.
戊二醛偶联组氨酸修饰金电极测定铜离子的研究   总被引:2,自引:0,他引:2  
本文主要研究了一种基于戊二醛偶联组氨酸修饰金电极的方法 ,并以该修饰电极为工作电极利用方波伏安法建立了一种检测痕量铜离子的新方法。在铜溶液中搅拌富集 ,铜离子与修饰电极表面的组氨酸形成配合物吸附在电极表面 ,在磷酸缓冲液 (pH 6 8)中 ,该配合物具有良好的电化学响应。在对不同浓度的铜离子进行检测时发现在 1× 10 - 1 2 ~ 1 8× 10 - 1 1 mol/L和 5× 10 - 7~ 2 1× 10 - 5mol/L之间方波伏安还原峰电流与铜离子浓度呈现良好的线性关系 ,其最低检测限可达 0 5× 10 - 1 2 mol/L ,并对可能的检测机理进行了探讨  相似文献   

12.
在掺硼金刚石电极表面修饰聚半胱氨酸的电极测定尿酸时抗坏血酸和多巴胺的干扰较低。在方波伏安信号中抗坏血酸或多巴胺与尿酸共存检测时尿酸的特征峰电位变化较小(不超过15mV),峰电流变化只有几微安培。利用循环伏安法、方波伏安法对比了修饰电极与没有经过修饰的电极对尿酸的响应,试验了扫描速度、方波振幅、pH值等对修饰电极性能的影响。在最优条件下,得到测定尿酸的线性范围为1.45×10-9~1.16×10-6mol/L。在上述定性定量分析的基础上对未经预处理的儿童肾病病人尿样进行了检测,得到了令人满意的结果。  相似文献   

13.
通过将电化学聚合的聚赖氨酸膜(PLL)修饰的玻碳电极浸入氧化石墨烯(GO)溶液中4h,利用电化学方法将电极上吸附的氧化石墨烯进行还原(ERGO),然后滴涂聚阳离子电解质(PDDA)制得PDDA/ERGO/PLL/GC修饰电极。研究了抗坏血酸和多巴胺在该修饰电极上的电化学行为,结果表明在PDDA和石墨烯的共同作用下,使得抗坏血酸(AA)和多巴胺(DA)的氧化峰电位负移,两者的氧化峰电位差达到140mV。利用微分脉冲伏安法考察了抗坏血酸和多巴胺的同时测定,AA的线性范围是0.2~2mmol/L,DA的线性范围是1~230μmol/L。该修饰电极具有良好的稳定性和重现性。  相似文献   

14.
制备了聚L-苯丙氨酸/铁氰根修饰电极,研究了Vc在该修饰电极上的电化学行为,建立了一种测定Vc的新方法.该方法简便准确.检测下限可达2.4x 10-7mol/L,在4.0x 10-7~2.0x 10-2mol/L的浓度范围内,峰电流与Vc的浓度呈良好的线性关系.该电极用于测定Vc片中Vc的含量,结果令人满意.  相似文献   

15.
用方波伏安法研究了多巴胺在电聚合甘氨酸膜修饰电极上的电化学行为,该修饰电极对多巴胺的氧化具有明显的催化作用,氧化峰电位负移,氧化电流明显增大,使得测定灵敏度显著提高.本文通过实验选择了最佳聚合时间,最佳pH条件,讨论了温度的影响以及反应机理.该电极有较宽的线性范围:2.5×10-7~1.2×10-4mol/L,检出限(信噪比=3)为8.0×10-9mol/L.对5×10-5mol/L多巴胺平行测定8次相对标准偏差为1.4%,该电极有效地排除了抗坏血酸的干扰,具有良好的稳定性和重现性,被用于样品中多巴胺的测定.  相似文献   

16.
制备了由聚番红花红和DNA固定的双层三维分布的纳米金修饰的玻碳电极,在此基础上研究了多巴胺(DA)在此修饰电极上的电化学行为,发现对DA的氧化,双层纳米金比单层的纳米金修饰的玻碳电极更能够起到明显的电催化作用。利用差分脉冲法(DPV)考察了DA测定的优化条件,并发现其浓度在1.0×10-8~1.0×10-6mol/L范围内与峰电流呈良好的线性关系。该电极用于实际样品的测定,结果满意。  相似文献   

17.
用循环伏安法制备了铜掺杂聚L-天冬氨酸修饰玻碳电极,研究了多巴胺(DA)和尿酸(UA)在该修饰电极上的电化学行为,建立了同时测定DA和UA的新方法。在pH3.5的磷酸盐缓冲溶液中,扫描速率为120mV]s时,DA和UA在该电极上产生氧化还原峰,峰电位分别为Eps=0.429V、Epc=0.336V(DA)和Eps=0.617V(UA),DA和UA的氧化峰分开达0.188V。采用循环伏安法(CV法)和示差脉冲伏安法(DPVs法)同时测定DA和UA的线性范围分别为:DA:3.00×10^-6-4.00×100mol/L、4.00×10^-5~1.00×10^-4mlo/L(CV)、3.00×10^-7~3.00×10^-6mol/L、3.00×10^-6—1.00×10^-5mol/L(DPVs),UA:8.00×10^-6~5.00×10^-5mol/L、5.00×10^-5-2.00×10^-4mol/L(CV)、3.00×10^-7~5.00×10^-5mol/L、5.00×10^-5.2.00×10^-4mol/L(DPVs);检出限分另U为8.0×10^-7mol/L、1.0×10^-6mol/L(CV)和3.0×10^-7mol/L、3.0×10^-7mol/L(DPVs)。用于人体尿液中DA和UA的同时测定,结果满意。  相似文献   

18.
任旺  张英 《化学传感器》2007,27(3):58-61
用恒电位沉积方法制备了肉桂酸修饰电极,研究了尿酸(UA)在该修饰电极上的电化学行为.研究表明,在优化的实验条件下,尿酸在修饰电极上有良好的电催化响应,其氧化峰电流与浓度在2.0×10-6~4.0×10-4 mol/L范围内成很好的线性关系,检出限为1.0×10-6 mol/L.该修饰电极制备简单、稳定性好、检测方便.  相似文献   

19.
制备了聚色氨酸修饰电极,研究了去甲肾上腺素在聚合物薄膜上的电化学行为,实验结果表明:在pH6.0的0.10mol/L磷酸盐缓冲溶液中,聚色氨酸薄膜对去甲肾上腺素的电化学氧化具有明显的催化作用,并可排除抗坏血酸的干扰。去甲肾上腺素检测的线性范围是4.5×10-7~3.0×10-5mol/L;检出限为6.5×10-8mol/L。该修饰电极具有良好的灵敏度、选择性和稳定性,已用于针剂样品分析。  相似文献   

20.
研究了青霉胺自组装膜在金电极上的电化学特性.在pH7.3的磷酸缓冲溶液中,利用差分脉冲法考察了多巴胺与尿酸在此修饰电极上的电化学行为.该电极可用于多巴胺与尿酸的同时测定,两者在修饰电极上的电位差可达到380 mV,且互不干扰.多巴胺与尿酸的氧化峰电流分别在1.0×10-4至1.0×10-3 mol/L,8.0×10-4至4.0×10-3 mol/L范围内与其浓度的大小呈良好的线性关系,检出限分别为6.5×10-6,2.1×10-5 mol/L.青霉胺自组装电极稳定性好,选择性高,可用于实际样品的测定,结果满意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号