首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Nowadays wireless body sensor networks (WBSNs) have great potential to enable a broad variety of assisted living applications such as human biophysical/biochemical control and activity monitoring for health care, e-fitness, emergency detection, emotional recognition for social networking, security, and highly interactive games. It is therefore important to define design methodologies and programming frameworks which enable rapid prototyping of WBSN applications. Several effective application development frameworks have been already proposed for WBSNs designed for TinyOS-based sensor platforms, e.g. CodeBlue, SPINE, and Titan. In this paper we present an application of MAPS, an agent framework for wireless sensor networks based on the Java-programmable Sun SPOT sensor platform, for the development of a real-time WBSN-based system for human activity monitoring. The agent-oriented programming abstractions provided by MAPS allow effective and rapid prototyping of the sensor-side software. In particular, the architecture of the developed system is a typical star-based WBSN composed of a coordinator node and two sensor nodes located respectively on the waist and the thigh of the monitored assisted living. The coordinator relies on a JADE-based enhancement of the SPINE coordinator and allows configuring sensors, receiving their data, and recognizing pre-defined human activities. On the other hand, each sensor node runs a MAPS-based agent that performs sensing of the 3-axial accelerometer sensor, computation of significant features on the acquired data, feature aggregation and transmission to the coordinator. The experimentation phase of the prototype, which allows evaluating the obtainable monitoring performances and activity recognition accuracy, is described. Moreover, a comparison of the monitoring system based on MAPS, AFME and SPINE in terms of programming effectiveness and system performances is discussed.  相似文献   

2.
This paper presents a lightweight middleware to be used for wireless medical body area networks. The middleware is designed to reside in mobile devices, and acts as a gateway to receive sensor data as well as to control a set of sensor devices attached to the wearer. The main essence of the middleware is to simplify and accelerate the development of wireless healthcare applications by providing highly reusable codes. The architecture of the middleware including its main functions such as data acquisition, dynamic plug-and-play capabilities, on-the-fly sensor reconfiguration, and resource management (i.e., sensor sleep/wake-up, critical self-wake) will be discussed. A security feature as a means to protect critical sensor data from malicious/unauthorized parties has also been incorporated in our proposed middleware. The prototype system of the middleware has been built and is presented in this paper together with its performance measurements.  相似文献   

3.
Recently, the cyber physical system has emerged as a promising direction to enrich the interactions between physical and virtual worlds. Meanwhile, a lot of research is dedicated to wireless sensor networks as an integral part of cyber physical systems. A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices that use sensors to monitor physical or environmental conditions. These autonomous devices, or nodes, combine with routers and a gateway to create a typical WSN system. Shrinking size and increasing deployment density of wireless sensor nodes implies the smaller equipped battery size. This means emerging wireless sensor nodes must compete for efficient energy utilization to increase the WSN lifetime. The network lifetime is defined as the time duration until the first sensor node in a network fails due to battery depletion. One solution for enhancing the lifetime of WSN is to utilize mobile agents. In this paper, we propose an agent-based approach that performs data processing and data aggregation decisions locally i.e., at nodes rather than bringing data back to a central processor (sink). Our proposed approach increases the network lifetime by generating an optimal routing path for mobile agents to transverse the network. The proposed approach consists of two phases. In the first phase, Dijkstra’s algorithm is used to generate a complete graph to connect all source nodes in a WSN. In the second phase, a genetic algorithm is used to generate the best-approximated route for mobile agents in a radio harsh environment to route the sensory data to the base-station. To demonstrate the feasibility of our approach, a formal analysis and experimental results are presented.  相似文献   

4.
Sensor networks are being used for an increasing number of applications ranging from environmental monitoring and precision agriculture to manufacturing and health care. By gathering data at unprecedented temporal and spatial granularity, sensor networks are revolutionizing these applications. Given the scale and complexity of these systems, they face a critical challenge in software Operations and Management, that is, installing, configuring, and updating thousands of software components in a heterogeneous sensor network. In this paper, we discuss automating and simplifying the process of defining the software environment on a sensor node running the Android platform. Android has significant share in the mobile phone market and runs on a broad range of devices including embedded platforms. This paper outlines the use of a new method for configuring embedded devices and sensor networks by drawing from techniques used for defining the software environment in data centers. We have also developed a software prototype to allow for a simple, reproducible, and flexible configuration of the Android software stack on a sensor node. Our exploratory research provides an insight into the use of modular configuration techniques in embedded devices and how they can be applied to the Android ecosystem. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
传感器网络是一个将传感器技术、嵌入式系统、通信网络技术相结合的网络,实现数据采集、无线定位、远程监控、设备管理等功能,结合ZigBee、WIFI、GPRS等无线网络的优点,构建一个异构无线传感器网络,实现无线网络和移动通讯刚络的远程数据采集、定位与控制、异常事件报警,系统通过无线传感器终端节点进行数据采集,利用具有接收、转发数据助能的无线网络接收,实现异构网络终端设备间的数据交互与共享,达到无线定位,短信报警、上位机软件监控的目的.  相似文献   

6.
The growing trend in pervasive systems forces traditional wireless sensor networks to deal with new challenges, such as dynamic application requirements and heterogeneous networks. One of the latest paradigms in this area is software defined wireless sensor network. According to the paradigm, the networks take care of managing topological information and forwarding decisions using a bipartite architecture in which a control plane decides the forwarding policies and the data plane (i.e. ordinary sensor nodes) executes them. Unfortunately, in highly dynamic networks, this approach generates an overhead of control packet exchange between the ordinary nodes and the control plane, that leads to additional energy consumptions. This paper proposes a fuzzy logic based solution, called Fuzzy Topology Discovery Protocol (FTDP), to improve the efficiency of software defined wireless sensor networks. This work is designed according to the Software Defined Networking solution for WIreless SEnsor networks (SDN-WISE), which is an open source solution for software defined wireless sensor networks. The proposed work is one of the first attempts to use fuzzy theory in software defined based wireless sensor networks. The simulation results show that our approach can increase the lifetime of the network by 45% and decreases the packet loss ratio by 50% compared to the basic SDN-WISE solution.  相似文献   

7.
Wireless sensor networks (WSN) are mobile ad hoc networks in which sensors have limited resources and communication capabilities. Secure communications in some wireless sensor networks are critical. Key management is the fundamental security mechanism in wireless sensor network. Many key management schemes have been developed in recent years.In this paper, we present wireless sensor network key management survey and taxonomy. We classify proposed wireless sensor network key management schemes into three categories based on the encryption key mechanism. We then divide each category into several subcategories based on key pre-distribution and key establishment.  相似文献   

8.
With the rapid development of hardware and embedded systems, wireless sensor networks (WSNs) are being developed for surveillance applications. While meriting more in-depth research and development, deploying a practical WSN for surveillance is challenging due to the limited power and bandwidth of the battery-operated sensor nodes. In this paper, we first propose an energy-efficient image transportation strategy through motion detection. In case of data delivery over long distance, this paper further investigates the use of cooperative communications to design a reliable image transmission scheme over WSN, and demonstrates its effectiveness in improving network reliability in wireless multimedia sensor networks.  相似文献   

9.
Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way since the energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor network. In this paper, we introduce an adaptive clustering protocol for wireless sensor networks, which is called Adaptive Decentralized Re-Clustering Protocol (ADRP) for Wireless Sensor Networks. In ADRP, the cluster heads and next heads are elected based on residual energy of each node and the average energy of each cluster. The simulation results show that ADRP achieves longer lifetime and more data messages transmissions than current important clustering protocol in wireless sensor networks.  相似文献   

10.
《Computer Communications》2007,30(14-15):2968-2975
Clustering has been well received as one of the effective solutions to enhance energy efficiency and scalability of large-scale wireless sensor networks. The goal of clustering is to identify a subset of nodes in a wireless sensor network, then all the other nodes communicate with the network sink via these selected nodes. However, many current clustering algorithms are tightly coupled with exact sensor locations derived through either triangulation methods or extra hardware such as GPS equipment. However, in practice, it is very difficult to know sensor location coordinates accurately due to various factors such as random deployment and low-power, low-cost sensing devices. Therefore, how to develop an adaptive clustering algorithm without relying on exact sensor location information is a very important yet challenging problem. In this paper, we try to address this problem by proposing a new adaptive clustering algorithm for energy efficiency of wireless sensor networks. Compared with other work having been done in this area, our proposed adaptive clustering algorithm is original because of its capability to infer the location information by mining wireless sensor energy data. Furthermore, based on the inferred location information and the remaining (residual) energy level of each node, the proposed clustering algorithm will dynamically change cluster heads for energy efficacy. Simulation results show that the proposed adaptive clustering algorithm is efficient and effective for energy saving in wireless sensor networks.  相似文献   

11.
The development of wireless sensor network with Internet of Things (IoT) predicts various applications in the field of healthcare and cloud computing. This can give promising results on mobile health care (M-health) and Telecare medicine information systems. M-health system on cloud Internet of Things (IoT) through wireless sensor network (WSN) becomes the rising research for the need of modern society. Sensor devices attached to the patients’ body which is connected to the mobile device can ease the medical services. Security is the key connect for optimal performance of the m-health system that share the data of patients in wireless networks in order to maintain the anonymity of the patients. This paper proposed a secure transmission of M-health data in wireless networks using proposed key agreement based Kerberos protocol. The patients processed data are stored in cloud server and accessed by doctors and caregivers. The data transfer between the patients, server and the doctors are accessed with proposed protocol in order to maintain the confidentiality and integrity of authentication. The efficiency of the proposed algorithm is compared with the existing protocols. For computing 100 devices it consumes only 91milllisecond for computation.  相似文献   

12.
Wireless sensor networks are a new class of ad hoc networks that will find increasing deployment in coming years, as they enable reliable monitoring and analysis of unfamiliar and untested environments. The advances in technology have made it possible to have extremely small, low powered sensor devices equipped with programmable computing, multiple parameter sensing, and wireless communication capability. Because of their inherent limitations, the protocols designed for such sensor networks must efficiently use both limited bandwidth and battery energy. We develop an M/G/1 model to analytically determine the delay incurred in handling various types of queries using our enhanced APTEEN (Adaptive Periodic Threshold-sensitive Energy Efficient sensor Network protocol) protocol. Our protocol uses an enhanced TDMA schedule to efficiently incorporate query handling, with a queuing mechanism for heavy loads. It also provides the additional flexibility of querying the network through any node in the network. To verify our analytical results, we have simulated a temperature sensing application with a Poisson arrival rate for queries on the network simulator ns-2. As the simulation and analytical results match perfectly well, this can be said to be the first step towards analytically determining the delay characteristics of a wireless sensor network.  相似文献   

13.
One critical issue in wireless sensor networks is how to gather sensed information in an energy-efficient way since the energy is a scarce resource in a sensor node. Cluster-based architecture is an effective architecture for data-gathering in wireless sensor networks. However, in a mobile environment, the dynamic topology poses the challenge to design an energy-efficient data-gathering protocol. In this paper, we consider the cluster-based architecture and provide distributed clustering algorithms for mobile sensor nodes which minimize the energy dissipation for data-gathering in a wireless mobile sensor network. There are two steps in the clustering algorithm: cluster-head election step and cluster formation step. We first propose two distributed algorithms for cluster-head election. Then, by considering the impact of node mobility, we provide a mechanism to have a sensor node select a proper cluster-head to join for cluster formation. Our clustering algorithms will achieve the following three objectives: (1) there is at least one cluster-head elected, (2) the number of cluster-heads generated is uniform, and (3) all the generated clusters have the same cluster size. Last, we validate our algorithms through an extensive experimental analysis with Random Walk Mobility (RWM) model, Random Direction Mobility (RDM) model, and a Simple Mobility (SM) model as well as present our findings.  相似文献   

14.
A typical pervasive monitoring system like a smart building depends on an infrastructure composed of hundreds of heterogeneous wireless sensor devices. Managing the energy consumption of these devices poses a challenging problem that affects the overall efficiency and usability. Existing approaches for sensor energy consumption typically assume a single monitoring application to consume sensor data and a static configuration for sensor devices. In this paper, we focus on a multi-application context with dynamic requirements and multi-modal sensor devices. We present 3SoSM, an approach to optimize interactions between application requirements and wireless sensor environment in real-time. It relies on an energy-aware dynamic configuration of sensor devices to lower energy consumption while fulfilling application requirements. To bind together sensor configuration and dynamic management of data streams, we design a sustainable multi-application monitoring system architecture for pervasive environments that collects application requirements for sensor data streams and optimizes them into sensor configurations. To demonstrate the effectiveness of our approach, a set of experiments are designed in the context of smart buildings. We comparatively evaluate our approach to show how dynamic sensor configuration for multiple monitoring applications indeed outperforms the mainstream duty-cycling method.  相似文献   

15.
Due to the inherent characteristics of resource-constrained sensors, communication overhead is always a major concern in wireless sensor networks (WSNs). Data aggregation is an essential technique to reduce the communication overhead and prolong network lifetime. Since data aggregation results are usually used to make critical decisions, the accuracy of final aggregation results is very important. Furthermore, as wireless sensor networks are increasing being deployed in security-critical applications, we should take security into consideration as well. Therefore, for such applications, data aggregation protocols must be highly energy efficient and highly accurate while being able to prevent an adversary from stealing private data held by each sensor node. In this paper, we propose an energy-efficient and high-accuracy (EEHA) scheme for secure data aggregation. The main idea of our scheme is that accurate data aggregation is achieved without releasing private sensor readings and without introducing significant overhead on the battery-limited sensors. We conduct extensive simulations to evaluate the performance of EEHA. Our analysis and simulations show that EEHA is more efficient and accurate than the existing scheme.  相似文献   

16.
事件监测是传感器网络研究中的一个重要问题,传感器网络自身的局限性以及感知数据的非确定性向事件监测技术提出了挑战.文中分析了传感器网络中存在的各种非确定性,引入可容错的事件监测机制.文中首先提出可容错的事件发现和参与事件监测节点选择算法.在此基础上,提出可容错的事件发生区域估算算法.算法对于动态传感器网络具有较好监测效果.最后通过大量模拟实验验证了所提出算法的性能.  相似文献   

17.
Sensor nodes are tiny, low-power, computationally limited and battery constrained electromechanical devices. A sensor node contains a sensing unit and a wireless communication unit. Sensor nodes are deployed over a field for sensing an event data in the environment and transfer it towards a base station over its wireless channel. In a typical application, vast amount of sensor nodes are deployed over a field which constitute a sensor network. Sensor nodes must be customized for a specific sensor network application before the deployment. This customization is needed not only for underlying networking application, but also for security related configurations. Random key predistribution mechanisms have been proposed to provide security for wireless sensor networks. In the literature, there are well known random key predistribution schemes. Some of these schemes are secure, but quite complex to apply in real-world applications due to their node-based customization requirements, while some other are easily applicable but they do not offer reasonable security. In this paper, we propose random key predistribution schemes for wireless sensor networks that provide varying ranges of security. The proposed schemes are easily applicable in real world scenarios due to their simplicity and relaxed node customization requirements. In this respect, our schemes provide a tradeoff. Moreover, our proposed schemes show a good extensibility property. We assume prior deployment knowledge. We examine performance of our schemes and compare them with well known random key predistribution schemes.  相似文献   

18.
Balancing the power consumption speed in flat and hierarchical WSN   总被引:4,自引:1,他引:3  
A combination of a cluster tree routing protocol and an Ad hoc on demand vector (AODV) routing protocol is used in the latest ZigBee standard wireless sensor networks (WSNs) technology. However, the AODV routing protocol has no means by which to take into consideration the power consumption of the nodes during the routing process. Therefore, a new approach is proposed in this paper to balance the power consumption speed and to distribute the responsibilities of routing among fiat wireless sensor nodes and the three levels of hierarchical wireless sensor nodes. These three levels are based on the three types of devices, which are used in the ZigBee standard: the coordinator, the touters, and the end devices. In this paper, we have compared the original AODV routing protocol with our extension approach for the distribution of power consumption. Based on the simulation results, our new approach has achieved better performance in terms of increasing the lifetime of the fiat wireless sensor network, the personal area network (PAN)coordinator, the touters, and the whole network of the hierarchical wireless sensor network. Additionally, it has better performance in terms of distributing the power consumption among the key nodes of the wireless sensor network.  相似文献   

19.
随着无线传感器网络的广泛应用,网络安全成了很多传感器网络应用的关键.在研究现有的安全方案的基础上,提出了一种支持安全网内处理的无线传感器网络加密方案.它能提供网络数据内容的语义加密、数据源认证、数据完整性和数据新鲜.同时,通过安全的网内处理延长了无线传感器网络的生命期.  相似文献   

20.
Due to limitations on transmission power of wireless devices, areas with sparse nodes are decisive to some extreme properties of network topology. In this paper, we assume wireless ad hoc and sensor networks are represented by uniform point processes or Poisson point processes. Asymptotic analyses based on minimum scan statistics are given for some crucial network properties, including coverage of wireless sensor networks, connectivity of wireless ad hoc networks, the largest edge length of geometric structures, and local-minimum-free geographic routing protocols. We derive explicit formulas of minimum scan statistics. By taking the transmission radius as a major parameter, our results are applied to various network problems. This work offers a unified approach to solve various problems and reveals the evolution of network topology. In addition, boundary effects are thoroughly handled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号