首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
高光谱图像丰富的光谱信息使其在目标检测、地物分类等领域都具有重要应用,分类作为高光谱应用的重要中间步骤引起了广泛 关注。高光谱图像空间信息刻画了光谱像素点与近邻关系,可以较好地弥补单纯使用光谱信息难以解决的同物异谱、同谱异物以及高维小样本等问题。传统预处理方式空间信息的使用是基于固定结构(如方窗)选择空间近邻以计算空间特征辅助分类,但会因窗口大小而影响空间特征质量。为此本文提出了结合分水岭分割的合成核支持向量机(Support vector machine, SVM)高光谱分类,根据分水岭分割图自适应选择优质的空间近邻,然后通过合成核SVM有效地把空间信息融入到原光谱信息分类 中。实验表明,本文方法更好地利用了空间信息,实现在少量样本下高光谱图像的快速高精度分类。  相似文献   

2.
《计算机工程》2017,(11):245-251
为提高高光谱图像分类精度,结合光谱信息、邻域信息和边界信息提出一种高光谱图像分类方案。利用局部费希尔判别分析算法进行降维操作并获取边界信息。根据块近邻分类器算法结合光谱和邻域2个维度获得判决信息。采用边界信息对块近邻分类器算法获得的分类标签进行标签平滑操作。在3个真实地物高光谱数据集上进行实验,结果表明该方案稳定有效地提高了高光谱图像的分类精度。  相似文献   

3.
遥感图像的像元级分类精度受混合像元的影响. 亚像元映射以像元分解获得的丰度值为基础,在地物分布规律的约束下,细化估计各类地物的亚像元级分布模式. 本文同时考虑了地物分布的空间与光谱信息,提出了一种基于局部连续性与全局相似性的光谱保持型亚像元映射算法. 针对地物的空间分布特性,提出了利用类内离散度对局部连续性进行建模,并通过相似分布像元表示误差引入全局相似性约束项. 针对地物的光谱特性,采用最小化光谱误差约束了亚像元映射过程中的光谱无失真性. 模拟数据与真实数据上的实验结果表明,本文算法比其他同类算法具有更高的估计精度,且更适合于实际应用.  相似文献   

4.
许明明  张良培  杜博  张乐飞 《计算机科学》2015,42(4):274-275, 296
高光谱遥感数据具有丰富的光谱信息,应用十分广泛,但其冗余的光谱信息有时会限制高光谱图像的分类等的精度以及计算复杂度.为了提高解译效率,高光谱图像降维不可或缺,这也是高光谱图像处理的研究热点之一.提出了一种基于类别可分性的高光谱图像波段选择方法(Endmember Separability Based band Selection,ESBB),该方法通过Mahalanobis距离最大化图像中各类地物的可分性来确定最优的波段组合.相较于其他监督波段选择算法,该方法不需要大量训练样本,不用对每个组合做分类处理.对波段选择后的结果进行分类的实验结果证明,该方法是一个快速有效的波段选择方法,可以得到一个较好的分类精度.  相似文献   

5.
高光谱图像的有效压缩已经成为高光谱遥感领域研究的热点。提出了一种基于分类KLT(Karhunen-Loève Transform)的高光谱图像压缩算法。该算法利用光谱信息对高光谱图像进行地物分类,根据相邻波段的相关性对高光谱图像进行波段分组。在地物分类与波段分组的基础上,对每组的每一类地物数据分别进行KL变换,利用EBCOT(Embedded Block Coding with Optimal Truncation)算法对所有主成分进行联合编码。实验结果表明,该算法能够取得优于JPEG2000以及DWT-JPEG2000的压缩性能,适合实现高光谱图像的有效压缩。  相似文献   

6.
高光谱图像的有效压缩已经成为高光谱遥感领域研究的热点。提出了一种基于分类KLT( Karhunen-Loeve Transform)的高光谱图像压缩算法。该算法利用光谱信息对高光谱图像进行地物分类,根据相邻波段的相关性对高光谱图像进行波段分组。在地物分类与波段分组的基础上,对每组的每一类地物数据分别进行KL变换,利用EBCOT(Embedded Block Coding with Optimal Trtmcation)算法对所有主成分进行联合编码。实验结果表明,该算法能够取得优于JPEG2000以及DWT-JPEG2000的压缩性能,适合实现高光谱图像的有效压缩。  相似文献   

7.
卢佳  保文星 《计算机工程》2019,45(1):246-252
针对高光谱图像分类中存在的空间信息与光谱信息融合问题,提出一种基于独立空谱残差融合的联合稀疏表示高光谱图像分类算法。使用类独立的光谱角初分类图像,获得像元初始标记后按特定条件进行筛选再构造像元邻域空间。提取图像的全局空间信息,并将其引入到空谱联合稀疏表示模型中,使用单独的光谱信息字典与空间信息字典分别进行图像光谱与空间的联合稀疏表示残差计算。在此基础上,使用残差融合算法确定图像类别。实验结果表明,相对SVM、KNN等算法,该算法能够提升高光谱图像的分类精度,且分类结果更稳定。  相似文献   

8.
针对小样本情况下高光谱图像亚像元定位精度有限的问题,提出利用协同表示与神经网络的高光谱图像亚像元定位算法。该算法以一幅低空间分辨率的高光谱图像和少量的训练样本作为输入,首先应用空间上采样和基于协同表示的分类技术获取一幅亚像元级类别标签图,同时应用基于协同表示的分类、光谱解混和空间引力模型获取另一幅亚像元级类别标签图,之后依据两幅初始的亚像元级类别标签图扩充训练集,最后利用扩充后的训练集基于BP神经网络对高光谱图像进行亚像元定位,从而提高小样本情况下高光谱图像亚像元定位的精度。对于Indian Pines和Pavia University图像,所提算法的总体分类精度比ASPM算法分别高3.39%和9.63%,比ACSPM算法分别高0.26%和8.91%。实验结果表明,所提算法优于ASPM和ACSPM算法,尤其适用于细节信息较为丰富的高光谱图像。  相似文献   

9.
针对由于空间信息利用不充分而导致的高光谱图像分类精度较低的问题,提出一种基于图正则自适应联合协同表示的高光谱图像分类算法.首先,采用双边滤波操作对高光谱图像进行空间信息提取,以充分挖掘每个像素的空间信息;其次,在联合协同表示的目标函数中引入图正则约束项,以保持高光谱数据的流形结构;再次,一方面利用图像分割来自适应调整空间邻域的形状,另一方面通过对中心像素的空间近邻赋予不同的权重,提出一种自适应空间-光谱特征融合策略;最后,基于误差最小原则,给出测试样本的类别标签.在两个高光谱数据集上的实验结果表明,所提出算法的整体分类精度分别达到98.50%和97.30%.  相似文献   

10.
目的 场景分类是遥感领域一项重要的研究课题,但大都面向高分辨率遥感影像。高分辨率影像光谱信息少,故场景鉴别能力受限。而高光谱影像包含更丰富的光谱信息,具有强大的地物鉴别能力,但目前仍缺少针对场景级图像分类的高光谱数据集。为了给高光谱场景理解提供数据支撑,本文构建了面向场景分类的高光谱遥感图像数据集(hyperspectral remote sensing dataset for scene classification,HSRS-SC)。方法 HSRS-SC来自黑河生态水文遥感试验航空数据,是目前已知最大的高光谱场景分类数据集,经由定标系数校正、大气校正等处理形成。HSRS-SC分为5个类别,共1 385幅图像,且空间分辨率较高(1 m),波长范围广(380~1 050 nm),同时蕴含地物丰富的空间和光谱信息。结果 为提供基准结果,使用AlexNet、VGGNet-16、GoogLeNet在3种方案下组织实验。方案1仅利用可见光波段提取场景特征。方案2和方案3分别以加和、级联的形式融合可见光与近红外波段信息。结果表明有效利用高光谱影像不同波段信息有利于提高分类性能,最高分类精度达到93.20%。为进一步探索高光谱场景的优势,开展了图像全谱段场景分类实验。在两种训练样本下,高光谱场景相比RGB图像均取得较高的精度优势。结论 HSRS-SC可以反映详实的地物信息,能够为场景语义理解提供良好的数据支持。本文仅利用可见光和近红外部分波段信息,高光谱场景丰富的光谱信息尚未得到充分挖掘。后续可在HSRS-SC开展高光谱场景特征学习及分类研究。  相似文献   

11.
目的 为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法 变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果 实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势。结论 实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。  相似文献   

12.
高光谱图像监督分类中,为了避免休斯效应需要大量的训练样本,但在实际应用中对样本进行标注成本非常高,因此,得到高质量的训练样本显得十分重要。提出一种基于主动学习的高光谱图像分类方法,通过对区域关注度的统计,有效地结合图像光谱和空间特性,基于主动学习方法获取信息量较大的训练样本,从而较大幅度提高了分类的精确度。实验结果表明,所提算法比传统的随机取样监督分类法和主动学习方法在分类精确度上有较大的优势。  相似文献   

13.
目的 地物分类是对地观测研究领域的重要任务。高光谱图像具有丰富的地物光谱信息,可用于提升遥感图像地物分类的准确度。如何对高光谱图像进行有效的特征提取与表示是高光谱图像分类应用的关键问题。为此,本文提出了一种结合倒置特征金字塔和U-Net的高光谱图像分类方法。方法 对高光谱数据进行主成分分析(principal component analysis,PCA)降维,获取作为网络输入的重构图像数据,然后使用U-Net逐层提取高光谱重构图像的空间特征。与此同时,利用倒置的特征金字塔网络抽取相应层级的语义特征;通过特征融合,得到既有丰富的空间信息又有较强烈的语义响应的特征表示。提出的网络利用注意力机制在跳跃连接过程中实现对背景区域的特征响应抑制,最终实现了较高的地物分类精度。结果 分析了PCA降维方法和输入数据尺寸对分类性能的影响,并在Indian Pines、Pavia University、Salinas和Urban数据集上进行了对比实验。本文方法在4个数据集上分别取得了98.91%、99.85%、99.99%和87.43%的总体分类精度,与支持向量机(support vector machine,SVM)等相关算法相比,分类精度高出1%~15%。结论 本文提出一种结合倒置特征金字塔和U-Net的高光谱图像分类方法,可以应用于有限训练样本下的高光谱图像分类任务,并在多个数据集上取得了较高的分类精度。实验结果表明倒置特征金字塔结构与U-Net结合的算法能够高效地实现高光谱图像的特征提取与表示,从而获得更精细的分类结果。  相似文献   

14.
New hyperspectral sensors can collect a large number of spectral bands, which provide a capability to distinguish various objects and materials on the earth. However, the accurate classification of these images is still a big challenge. Previous studies demonstrate the effectiveness of combination of spectral data and spatial information for better classification of hyperspectral images. In this article, this approach is followed to propose a novel three-step spectral–spatial method for classification of hyperspectral images. In the first step, Gabor filters are applied for texture feature extraction. In the second step, spectral and texture features are separately classified by a probabilistic Support Vector Machine (SVM) pixel-wise classifier to estimate per-pixel probability. Therefore, two probabilities are obtained for each pixel of the image. In the third step, the total probability is calculated by a linear combination of the previous probabilities on which a control parameter determines the efficacy of each one. As a result, one pixel is assigned to one class which has the highest total probability. This method is performed in multivariate analysis framework (MAF) on which one pixel is represented by a d-dimensional vector, d is the number of spectral or texture features, and in functional data analysis (FDA) on which one pixel is considered as a continuous function. The proposed method is evaluated with different training samples on two hyperspectral data. The combination parameter is experimentally obtained for each hyperspectral data set as well as for each training samples. This parameter adjusts the efficacy of the spectral versus texture information in various areas such as forest, agricultural or urban area to get the best classification accuracy. Experimental results show high performance of the proposed method for hyperspectral image classification. In addition, these results confirm that the proposed method achieves better results in FDA than in MAF. Comparison with some state-of-the-art spectral–spatial classification methods demonstrates that the proposed method can significantly improve classification accuracies.  相似文献   

15.
目的 高光谱遥感影像由于其巨大的波段数直接导致信息的高冗余和数据处理的复杂,这不仅带来庞大的计算量,而且会损害分类精度。因此,在对高光谱影像进行处理、分析之前进行降维变得非常必要。分类作为一种重要的获取信息的手段,现有的基于像素点和图斑对象特征辨识地物种类的方法在强噪声干扰训练样本条件下精度偏低,在对象的基础上,将光谱和空间特征相似的对象合并成比其还要大的集合,再按照各个集合的光谱和空间特征进行分类,则不容易受到噪声等因素的干扰。方法 提出混合编码差分进化粒子群算法的双种群搜索策略进行降维,基于支持向量机的多示例学习算法作为分类方法,构建封装型降维与分类模型。结果 采用AVIRIS影像进行实验,本文算法相比其他相近的分类方法能获得更高的分类精度,达到96.03%,比其他相近方法中最优的像元级的混合编码的分类方法精度高出0.62%。结论 在针对强干扰的训练样本条件下,本文算法在降维过程中充分发挥混合编码差分进化算法的优势,分类中训练样本中的噪声可以看做多示例学习中训练包"歧义性"的特定表现形式,有效提高了分类的精度。  相似文献   

16.
摘要:对于高光谱影像存在高维非线性、数据冗余多、纯训练样本难以提取等不足,本文引入频率域空间的谐波分析(Harmonic Analysis,HA)理论并提出了一种高光谱影像的HA-Bayes监督分类方法。该方法在保持高光谱数据空-谱特性不变的情况下,从光谱维角度分析不同分解层的影像光谱谐波特征,将高光谱影像变换成由谐波能量谱组成的频率域特征矢量信息。通过建立谐波能量谱特征向量的先验知识,实现Bayes准则下谐波能量谱特征矢量信息判别与分类,最终实现高光谱影像分类。将此方法应用到ROSIS高光谱影像分类时获得的分类总体精度达85.5%,Kappa系数也达到了0.812。进一步实验也证明频率域的谐波分析在高光谱遥感影像特征提取与分类方面具有更好的优势和潜力。  相似文献   

17.
目的 高光谱图像包含了丰富的空间、光谱和辐射信息,能够用于精细的地物分类,但是要达到较高的分类精度,需要解决高维数据与有限样本之间存在矛盾的问题,并且降低因噪声和混合像元引起的同物异谱的影响。为有效解决上述问题,提出结合超像元和子空间投影支持向量机的高光谱图像分类方法。方法 首先采用简单线性迭代聚类算法将高光谱图像分割成许多无重叠的同质性区域,将每一个区域作为一个超像元,以超像元作为图像分类的最小单元,利用子空间投影算法对超像元构成的图像进行降维处理,在低维特征空间中执行支持向量机分类。本文高光谱图像空谱综合分类模型,对几何特征空间下的超像元分割与光谱特征空间下的子空间投影支持向量机(SVMsub),采用分割后进行特征融合的处理方式,将像元级别转换为面向对象的超像元级别,实现高光谱图像空谱综合分类。结果 在AVIRIS(airbone visible/infrared imaging spectrometer)获取的Indian Pines数据和Reflective ROSIS(optics system spectrographic imaging system)传感器获取的University of Pavia数据实验中,子空间投影算法比对应的非子空间投影算法的分类精度高,特别是在样本数较少的情况下,分类效果提升明显;利用马尔可夫随机场或超像元融合空间信息的算法比对应的没有融合空间信息的算法的分类精度高;在两组数据均使用少于1%的训练样本情况下,同时融合了超像元和子空间投影的支持向量机算法在两组实验中分类精度均为最高,整体分类精度高出其他相关算法4%左右。结论 利用超像元处理可以有效融合空间信息,降低同物异谱对分类结果的不利影响;采用子空间投影能够将高光谱数据变换到低维空间中,实现有限训练样本条件下的高精度分类;结合超像元和子空间投影支持向量机的算法能够得到较高的高光谱图像分类精度。  相似文献   

18.
The rapid development of space and computer technologies allows for the possibility to store huge amounts of remotely sensed image data, collected using airborne and satellite instruments. In particular, NASA is continuously gathering high‐dimensional image data with Earth observing hyperspectral sensors such as the Jet Propulsion Laboratory's airborne visible–infrared imaging spectrometer (AVIRIS), which measures reflected radiation in hundreds of narrow spectral bands at different wavelength channels for the same area on the surface of the Earth. The development of fast techniques for transforming massive amounts of hyperspectral data into scientific understanding is critical for space‐based Earth science and planetary exploration. Despite the growing interest in hyperspectral imaging research, only a few efforts have been devoted to the design of parallel implementations in the literature, and detailed comparisons of standardized parallel hyperspectral algorithms are currently unavailable. This paper compares several existing and new parallel processing techniques for pure and mixed‐pixel classification in hyperspectral imagery. The distinction of pure versus mixed‐pixel analysis is linked to the considered application domain, and results from the very rich spectral information available from hyperspectral instruments. In some cases, such information allows image analysts to overcome the constraints imposed by limited spatial resolution. In most cases, however, the spectral bands collected by hyperspectral instruments have high statistical correlation, and efficient parallel techniques are required to reduce the dimensionality of the data while retaining the spectral information that allows for the separation of the classes. In order to address this issue, this paper also develops a new parallel feature extraction algorithm that integrates the spatial and spectral information. The proposed technique is evaluated (from the viewpoint of both classification accuracy and parallel performance) and compared with other parallel techniques for dimensionality reduction and classification in the context of three representative application case studies: urban characterization, land‐cover classification in agriculture, and mapping of geological features, using AVIRIS data sets with detailed ground‐truth. Parallel performance is assessed using Thunderhead, a massively parallel Beowulf cluster at NASA's Goddard Space Flight Center. The detailed cross‐validation of parallel algorithms conducted in this work may specifically help image analysts in selection of parallel algorithms for specific applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
针对高光谱遥感图像维数高、样本少导致分类精度低的问题,提出一种基于DS聚类的高光谱图像集成分类算法(DSCEA)。首先,根据高光谱数据特点,从整体波段中随机选择一定数量的波段,构成不同的训练样本;其次,分析图像的空谱信息,构造无向加权图,利用优势集(DS)聚类方法得到最大特征差异的波段子集;最后,根据不同样本,利用支持向量机训练具有差异的单个分类器,采用多数表决法集成最终分类器,实现对高光谱遥感图像的分类。在Indian Pines数据集上DSCEA算法的分类精度最高可达到84.61%,在Pavia University数据集上最高可达到91.89%,实验结果表明DSCEA算法可以有效的解决高光谱分类问题。  相似文献   

20.
高光谱图像含有数百个波段,包含丰富的光谱信息,因此被广泛应用于地物分类中,但仍存在 着维数灾难的问题。高光谱图像中同时也含有丰富的纹理信息,有效利用纹理信息能够显著提高分类精度。三 维 Gabor 滤波器不仅能够保留图像丰富的光谱信息,还能提取到图像的纹理特征。为了充分利用高光谱图像的 特征,提出一种基于三维 Gabor 和残差三维卷积神经网络(Res-3DCNN)的分类方法。三维卷积神经网络(3DCNN) 能够直接对三维立方体数据进行处理,提取到深层纹理-光谱信息,然而随着网络层的加深会产生网络退化问 题,因此利用残差思想对 3DCNN 模型进行改进。在 PaviaU,Indian Pines 和 Salinas 3 个公共高光谱图像数据 集上进行实验,分别取得 99.17%,97.40%,98.56%的平均分类精度,结果表明该方法能有效提高高光谱图像 的地物分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号