首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
给出了一种基于小波变换的图像融合方法,对小波分解后的低频分量通过度量其图像块空间频率和对比度来确定融合图像的低频分量,对分解后得到的高频分量,选择高频系数时,基于绝对值最大的原则,并对选择结果进行一致性验证,最后重构得到融合图像。从仿真结果可以看出,给出的方法很好地保留了多幅原图像的有用信息,融合图像清晰度和对比度都较好,是一种有效的图像融合算法。  相似文献   

2.
一种基于小波变换的图像融合新算法*   总被引:5,自引:1,他引:4  
在阐述小波图像融合算法的基础上,针对小波分解后各频域融合算子和融合规则的选择,提出一种新的基于小波分解的图像融合算法。对小波分解后的低频分量通过度量其图像块之间的相关系数和空间频率来确定融合图像的尺度系数;对高频分量,以方向对比度为判据确定融合图像的小波系数;最后,通过小波逆变换得到融合图像。对多组图像进行实验,实验结果表明,该方法是有效的。  相似文献   

3.
基于局部熵的小波变换图像融合算法   总被引:2,自引:1,他引:1  
周德龙  余孟杰 《计算机仿真》2009,26(10):241-243,269
研究基于小波变换的图像融合算法。首先对待融合图像进行小波多尺度分解,得到小波的分解系数,对高频分量和低频分量系数采取不同的融合规则。低频部分系数融合采用简单加权平均法,高频部分系数融合采用基于邻域熵值的方法。对融合后系数进行逆小波变换得到重构图像,融合后图像清晰、对比度好。与最大绝对值法、领域方差法作比较。最后通过熵、标准差、平均梯度值等参数对融合后的图像进行定量分析。实验数据表明提出的方法是切实可行的。  相似文献   

4.
一种基于小波方向对比度的多聚焦图像融合方法   总被引:5,自引:1,他引:5       下载免费PDF全文
人类视觉系统对于图像的局部对比度非常敏感,如果把小波变换和方向对比度结合起来,融合效果可能更好。在研究了方向对比度后提出了一种新的基于小波方向对比度的多聚焦图像融合方法。首先对参加融合的两幅图像进行小波多尺度分解,然后在每幅图像的每个分解层上,分别计算高频子带每个像素的邻域均值和低频子带的邻域均值之比,其中该分解层的低频子带是由上个分解层的低频子带和高频子带求2维离散小波逆变换得到,采用两者之比较大者所对应的高频子带系数作为融合后对应的小波系数,然后从最高分解层到最低分解层依次对得到的高频小波系数和该分解层的低频小波系数求2维离散小波逆变换,最终得到融合后的图像。这种方法考虑了邻域内像素的相关性,减少了融合像素的错误选取。实验结果表明,该方法的融合效果比针对每个像素求小波方向对比度的多聚焦图像融合方法的融合效果得到提高。  相似文献   

5.
一种基于小波变换的多聚焦图像融合方法   总被引:1,自引:0,他引:1  
提出了一种改进的基于小波变换的多聚焦图像融合方法。该方法采用小波变换对源图像进行多尺度分解,得到高频和低频图像;对高频分量采用基于邻域方差加权平均的方法得到高频融合系数,对低频分量采用基于局部区域梯度信息的方法得到低频融合系数;进行小波反变换得到融合图像。采用均方根误差、信息熵以及峰值信噪比等评价标准,将该方法与传统融合方法的融合效果进行了比较。实验结果表明,该方法所得融合图像的效果和质量均有明显提高。  相似文献   

6.
基于形态学小波变换的图像融合算法   总被引:2,自引:0,他引:2       下载免费PDF全文
在给出基于小波变换图像融合算法的基础上,为了增强图像的质量,提高图像分辨率,提出一种基于数学形态学的小波变换图像融合算法。对读入的图像进行小波变换分解,将分解后的高低频系数用一个扩展矩阵进行存储。在低频分量系数选择中,采用数学形态学方法进行边缘检测,得到边缘图像后,对边缘图像中的尺度系数采用加权平均法进行融合。在选择高频系数时,基于绝对值最大的原则。对多组图像进行实验,实验结果表明,该算法优于传统的融合算法,有效提高了图像的分辨率。  相似文献   

7.
针对传统的基于小波对比度图像融合方法的不足,结合非采样Contourlet变换的优点提出了一种新的基于非采样Contourlet变换的区域对比度图像融合方法。该方法对图像经非采样Contourlet变换后得到的低频分量采用基于区域能量的自适应加权融合;高频分量结合人眼的视觉特性,提出了一种新的基于区域对比度的加权与选择相结合的融合方法。通过非采样Contourlet变换的逆变换得到融合图像。实验结果表明,该融合方法较传统的方法具有更强的获取细节信息的能力,其融合效果优于传统的图像融合算法。  相似文献   

8.
针对传统NSCT图像融合算法存在的不足,提出一种基于增补小波变换和PCNN的NSCT域图像融合算法。首先对源图像进行NSCT分解,生成一系列低频和高频分量。对低频分量利用二维小波分解,生成一个低频和三个方向分量,对低频分量利用局部区域能量加权方法融合,三个方向分量利用改进的高斯加权SML方法融合;对NSCT分解的高频分量,分为对最高层和其它层的融合,最高层利用改进的高斯加权SML方法融合,其余层利用边缘梯度信息激励PCNN方法融合。最后对NSCT进行逆变换得到融合图像。实验结果证实了所提算法的有效性。  相似文献   

9.
和小波变换相比较,曲波变换能更好地表示图像的边缘信息.在此基础上给出了一种基于曲波变换的图像融合方法,并将其应用于红外和可见光图像融合.首先,对红外图像和可见光图像分别进行曲波变换,得到两幅图像的低频分量和不同尺度的高频分量.在对源图像的各分量融合时,对低频分量采用平均加权进行融合.对高频分量采用取绝对值较大的方法进行融合,得到融合后的低频分量和不同尺度的高频分量,最后对这些融合后的分量进行重构,得到融合图像.仿真结果表明:和基于小波变换的融合算法相比较,该算法较好地保留了源图像的细节信息,提高了融合的效果.  相似文献   

10.
针对水下图像对比度低及细节模糊的问题,提出一种基于图像融合的自适应水下图像增强方法,实现不同类型水下图像的增强效果。基于颜色校正方法对水下图像进行颜色均衡化预处理;对亮度分量L进行Gamma校正,获得对比度提升的亮度图像;对两个亮度分量进行三层小波分解,提出对分解所得的低频分量及高频分量分别采用线性融合和自适应融合策略进行融合。多尺度融合保证了增强图像细节的丰富性,自适应融合策略体现了融合过程的可控性。实验结果表明,增强的水下图像呈现出高对比度和清晰的细节。  相似文献   

11.
针对红外与可见光图像融合存在融合图像对比度和清晰度降低、噪声干扰等问题,提出一种DTCWT域的红外与可见光图像融合算法。首先对源图像进行预增强处理;然后通过DTCWT正变换得到低频子带图像和高频子带图像;再分别利用基于直觉模糊集的融合规则融合低频子带图像,基于信息反差对比度的融合规则融合高频子带图像;最后对融合后的低频子带图像和高频子带图像进行DTCWT逆变换得到融合图像。实验结果表明,本文算法能有效提高融合图像对比度和清晰度,降低噪声干扰,客观评价指标总体优于现有算法的,运行效率也有所提升。  相似文献   

12.
为了增加图像的细节信息,提出了一种基于NSCT和分数阶微分的多聚焦图像融合方法。首先采用NSCT将源图像分解为低频子带和高频子带,低频融合规则以基于局部对比度的变化显著度最大为决策图,高频融合规则以基于分数阶微分算法的梯度最大为决策图。最后通过逆NSCT得到融合图像。通过对比多组融合图像主、客观评价结果表明,该方法能有效保留边缘信息。  相似文献   

13.
针对红外与可见光图像融合时出现的细节模糊、对比度降低等问题,论文提出了一种基于非下采样轮廓波变换(Nonsubsampled Contourlet Transform,NSCT)和卷积稀疏表示(Convolutional Sparse Representation,CSR)的图像融合方法.首先,分别对红外图像和可见光图...  相似文献   

14.
为解决多聚焦图像融合算法中细节信息保留受限的问题,提出改进稀疏表示与积化能量和的多聚焦图像融合算法。首先,对源图像采用非下采样剪切波变换,得到低频子带系数和高频子带系数。接着,通过滑动窗口技术从低频子带系数中提取图像块,构造联合局部自适应字典,利用正交匹配追踪算法计算得到稀疏表示系数,利用方差能量加权规则得到融合后的稀疏系数,再通过反向滑动窗口技术获得融合后的低频子带系数;然后,对于高频子带系数提出积化能量和的融合规则,得到融合后高频子带系数;最后,通过逆变换获得融合图像。实验结果表明,该算法能保留更详细的细节信息,在视觉质量和客观评价上具有一定的优势。  相似文献   

15.
针对多聚焦图像,提出了一种新的基于小波变换的图像融合算法.首先将图像进行小波分解,得到低频图像和高频图像,对于低频图像采用基于邻域能量的方法进行融合,高频图像采用基于邻域方差取大的方法进行融合.最后进行小波逆变换,得到最终的融合图像.通过仿真实验验证了算法的有效性,实验结果表明,该算法明显优于传统算法.  相似文献   

16.
为提高图像融合的清晰度,本文提出一种基于改进的稀疏表示和脉冲耦合神经网络(pulse coupled neural network,PCNN)的图像融合。利用非下采样剪切波变换(non-subsampled shearlet transform,NSST)对源图像进行分解变换,得到相应的低频子带和高频子带具有不同的信息。对于低频子带,采用改进的稀疏表示进行融合,利用K奇异值分解(K-singular value decomposition,K-SVD)算法,并对源图像进行自适应学习的多个子字典构造成联合词典。对于高频子带,则改进PCNN融合系数的选择方法,利用改进的空间频率作为神经元反馈输入来激励PCNN模型,并根据点火输出的总幅度最大的融合规则选择高频系数。最后,将融合后的低频子带和高频子带系数进行NSST逆变换,重构出融合图像。实验结果表明:该算法很好地保留了图像的边缘信息,并且得到的图像在相关的客观评价标准上也取得了良好的效果,表明了本算法的有效性。  相似文献   

17.
在临床医学领域, 图像辅助诊断对医学视图的处理效果要求很高. 针对医学图像融合过程中图像视觉效果较差的问题, 提出了一种基于稀疏理论与快速有限剪切变换的医学图像融合算法, 提高了医学图像处理效率. 首先, 采用快速有限剪切波变换(FFST)分解源图像, 将其分解为高频系数和低频系数; 其次, 根据高频系数和低频系数的不同性质, 提供不同的融合策略, 通过相对标准差比较法对高频系数进行处理, 对于稀疏性较差的低频系数利用K-SVD方法训练, 得到字典并采用稀疏原理进行处理; 最后, 将融合后的高频和低频系数通过FFST逆变换融合到医学图像中. 实验结果表明, 算法的图像融合效果好, 尤其是在提高图像清晰度等方面, 具有良好的实用价值和应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号