首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper deals with the state feedback controller design for a class of high‐order feedforward (upper‐triangular) nonlinear systems with delayed inputs. The uncertainties in the systems are assumed to be dominated by higher‐order nonlinearities multiplying by a constant growth rate. The designed controller, which is a continuous but not smooth feedback, could achieve global asymptotical stability. Based on the appropriate state transformation of time‐delay systems, the problem of controller design can be converted into the problem of finding a parameter, which can be obtained by appraising the nonlinear terms of the systems. The nonlinear systems considered here are more general than conventional feedforward systems and they could be viewed as generalized feedforward systems. Two examples are given to show the effectiveness of the proposed design procedure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
For the global stabilization of a family of feedforward nonlinear time‐delay systems whose linearized systems consist of a chain of identical oscillators, a saturated feedback control is established based on a special canonical form. The proposed control laws use not only the current states but also the delayed states for feedback, which helps maintain the decoupling property in the recursive design. Moreover, explicit conditions guaranteeing the stability of the closed‐loop system are provided. When the nonlinear terms vanish and even the oscillators are distinct, a modified saturated feedback control can still be established for the corresponding global stabilization problem. Two numerical examples are given to illustrate the effectiveness of the proposed approaches.  相似文献   

3.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper studies the problem of global stabilization of a family of discrete‐time feedforward time‐delay systems with bounded controls. Two classes of nonlinear control laws are established based on a special canonical form of the considered system. The proposed control laws use not only the current states but also the delayed states for feedback and, moreover, contain some free parameters. These advantages can help to improve the transient performance of the closed‐loop system significantly. A practical example is given for illustration.  相似文献   

5.
This paper studies the decentralized event‐triggered control of large‐scale nonlinear systems. We consider a class of decentralized control systems that are transformable into an interconnection of input‐to‐state stable subsystems with the sampling errors as the inputs. The sampling events for each subsystem are triggered by a threshold signal, and the threshold signals for the subsystems are independent with each other for the decentralized implementation. By appropriately designing the event‐triggering mechanisms, it is shown that infinitely fast sampling can be avoided for each subsystem and asymptotic regulation is achievable for the large‐scale system. The proposed design is based on the ISS small‐gain arguments, and is validated by a benchmark example of controlling two coupled inverted pendulums.  相似文献   

6.
This article is concerned with the global stabilization problem of a family of feedforward nonlinear time‐delay systems whose linearized system consists of multiple distinct oscillators. To fully utilize the delayed information and maintain the state decoupling property in the controller design, the considered nonlinear feedforward system is first transformed into a new system which contains time delays in both its input and states based on a novel model transformation containing time delays, and then the stabilizing saturated controller for the transformed system is designed based on the recursive design method. Meanwhile, explicit stability conditions are also provided. When the linearized system is a cascade of multiple oscillators and multiple integrators, a modified saturated feedback control utilizing not only the current state but also the delayed state is also established for the corresponding global stabilization problem. Two examples, including a practical one, are given to show the effectiveness and superiority of the proposed approaches.  相似文献   

7.
In this paper, an adaptive fuzzy decentralized output feedback control approach is presented for a class of uncertain nonlinear pure‐feedback large‐scale systems with immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the immeasurable states. On the basis of the adaptive backstepping recursive design technique, an adaptive fuzzy decentralized output feedback is developed. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semiglobally uniformly ultimately bounded (SUUB), and that the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters. Simulation studies are included to illustrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The stabilization of feedforward nonlinear systems subject to hard‐input nonlinearities is a challenging problem due to the presence of input uncertainties. This paper deals with adaptive control of a class of feedforward nonlinear systems driven by unknown dead‐zone inputs. The unknown dead‐zone input nonlinearity is assumed to be either symmetric or non‐symmetric. The control design is based on the combination of the invariant‐manifold stabilization technique with the classical adaptive and robust compensation methods. Simulation results showed that the presence of the dead‐zone inputs in the system dynamics can be handled even for arbitrary large dead‐zone parameters.  相似文献   

9.
This paper investigates the problem of decentralized stabilization via saturated delayed feedback. First, a new class of saturated delayed feedback controllers is proposed for a class of single-input feedforward nonlinear systems. Then, this design scheme is generalized for the setting of decentralized feedforward systems using saturated time-delayed feedback. The stability analysis for the closed-loop decentralized systems is rather simple based on the proposed feedback structure.  相似文献   

10.
This paper addresses the problem of output feedback sampled‐data stabilization for upper‐triangular nonlinear systems with improved maximum allowable transmission delay. A class of hybrid systems are firstly introduced. The transmission delay may be larger than the sampling period. Then, sufficient conditions are proposed to guarantee global exponential stability of the hybrid systems. Based on these sufficient conditions and a linear continuous‐discrete observer, an output feedback control law is presented to globally exponentially stabilize the feedforward nonlinear system. The improved maximum allowable transmission delay is also given. The results are also extended to output feedback sampled‐data stabilization for lower‐triangular nonlinear systems. Finally, illustrative examples are used to verify the effectiveness of the proposed design methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an adaptive fuzzy decentralized backstepping output feedback control approach is proposed for a class of uncertain large‐scale stochastic nonlinear systems without the measurements of the states. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed for estimating the unmeasured states. Using the designed fuzzy state observer, and by combining the adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy decentralized output feedback control approach is developed. It is shown that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing appropriate design parameters. A simulation example is provided to show the effectiveness of the proposed approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a general method is developed to generate a stable adaptive fuzzy semi‐decentralized control for a class of large‐scale interconnected nonlinear systems with unknown nonlinear subsystems and unknown nonlinear interconnections. In the developed control algorithms, fuzzy logic systems, using fuzzy basis functions (FBF), are employed to approximate the unknown subsystems and interconnection functions without imposing any constraints or assumptions about the interconnections. The proposed controller consists of primary and auxiliary parts, where both direct and indirect adaptive approaches for the primary control part are aiming to maintain the closed‐loop stability, whereas the auxiliary control part is designed to attenuate the fuzzy approximation errors. By using Lyapunov stability method, the proposed semi‐decentralized adaptive fuzzy control system is proved to be globally stable, with converging tracking errors to a desired performance. Simulation examples are presented to illustrate the effectiveness of the proposed controller. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the stabilization problem for a class of large-scale nonlinear time-delay systems in lower triangular form. The uncertain nonlinearities are assumed to be bounded by continuous functions of the outputs or delayed outputs multiplied by unmeasured states or delayed states. An observer based output feedback control scheme is proposed using the dynamic gain control design approach. Based on Lyapunov stability theory, global asymptotic stability of the closed-loop control system is proved. Contrary to many existing control designs for lower triangular nonlinear systems, the celebrated backstepping method is not utilized here. An example is finally given to demonstrate the effectiveness of the proposed design procedure.  相似文献   

14.
An adaptive fuzzy decentralized backstepping output-feedback control approach is proposed for a class of nonlinear large-scale systems with completely unknown functions,the interconnections mismatched in control inputs,and without the measurements of the states.Fuzzy logic systems are employed to approximate the unknown nonlinear functions,and an adaptive high-gain observer is developed to estimate the unmeasured states.Using the designed high-gain observer,and combining the fuzzy adaptive control theory with backstepping approach,an adaptive fuzzy decentralized backstepping output-feedback control scheme is developed.It is proved that the proposed control approach can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded(SUUB),and that the observer errors and the tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Finally,a simulation example is provided to show the eectiveness of the proposed approach.  相似文献   

15.
This paper addresses a robust control approach for a class of input–output linearizable nonlinear systems with uncertainties and modeling errors considered as unknown inputs. As known, the exact feedback linearization method can be applied to control input–output linearizable nonlinear systems, if all the states are available and modeling errors are negligible. The mentioned two prerequisites denote important problems in the field of classical nonlinear control. The solution approach developed in this contribution is using disturbance rejection by applying feedback of the uncertainties and modeling errors estimated by a specific high‐gain disturbance observer as unknown inputs. At the same time, the nonmeasured states can be calculated from the estimation of the transformed system states. The feasibility and conditions for the application of the approach on mechanical systems are discussed. A nonlinear multi‐input multi‐output mechanical system is taken as a simulation example to illustrate the application. The results show the robustness of the control design and plausible estimations of full‐rank disturbances.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper focuses mainly on decentralized intelligent tracking control for a class of high‐order stochastic nonlinear systems with unknown strong interconnected nonlinearity in the drift and diffusion terms. For the control of uncertain high‐order nonlinear systems, the approximation capability of RBF neural networks is utilized to deal with the difficulties caused by completely unknown system dynamics and stochastic disturbances, and only one adaptive parameter is constructed to overcome the overparameterization problem. Then, to address the problem from high‐order strong interconnected nonlinearities in the drift and diffusion terms with full states of the overall system, by using the monotonically increasing property of the bounding functions, the variable separation technique is achieved. Lastly, based on the Lyapunov stability theory, a decentralized adaptive neural control method is proposed to reduce the number of online adaptive learning parameters. It is shown that, for bounded initial conditions, the designed controller can ensure the semiglobally uniformly ultimate boundedness of the solution of the closed‐loop system and make the tracking errors eventually converge to a small neighborhood around the origin. Two simulation examples including a practical example are used to further illustrate the effectiveness of the design method.  相似文献   

17.
A robustness design of fuzzy control is proposed in this paper to overcome the effect of modeling errors between nonlinear multiple time‐delay systems and fuzzy models. In terms of Lyapunov's direct method, a stability criterion is derived to guarantee the UUB (uniformly ultimately bounded) stability of nonlinear multiple time‐delay interconnected systems with disturbances. Based on this criterion and the decentralized control scheme, a set of fuzzy controllers is then synthesized via the technique of parallel distributed compensation (PDC) to stabilize the nonlinear multiple time‐delay interconnected systems and the Hcontrol performance is achieved in the mean time.  相似文献   

18.
In general, due to the interactions among subsystems, it is difficult to design an H decentralized controller for nonlinear interconnected systems. The model reference tracking control problem of nonlinear interconnected systems is studied via H decentralized fuzzy control method. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. A state feedback decentralized fuzzy control scheme is developed to override the external disturbances such that the H∞ model reference tracking performance is achieved. Furthermore, the stability of the nonlinear interconnected systems is also guaranteed. If states are not all available, a decentralized fuzzy observer is proposed to estimate the states of each subsystem for decentralized control. Consequently, a fuzzy observer-based state feedback decentralized fuzzy controller is proposed to solve the H tracking control design problem for nonlinear interconnected systems. The problem of H decentralized fuzzy tracking control design for nonlinear interconnected systems is characterized in terms of solving an eigenvalue problem (EVP). The EVP can be solved very efficiently using convex optimization techniques. Finally, simulation examples are given to illustrate the tracking performance of the proposed methods  相似文献   

19.
In this paper, we investigate global decentralized sampled‐data output feedback stabilization problem for a class of large‐scale nonlinear systems with time‐varying sensor and actuator failures. The considered systems include unknown time‐varying control coefficients and inherently nonlinear terms. Firstly, coordinate transformations are introduced with suitable scaling gains. Next, a reduced‐order observer is designed to estimate unmeasured states. Then, a decentralized sampled‐data fault‐tolerant control scheme is developed with an allowable sampling period. By constructing an appropriate Lyapunov function, it can be shown that all states of the resulting closed‐loop system are globally uniformly ultimately bounded. Finally, the validity of the proposed control approach is verified by using two examples.  相似文献   

20.
This paper focuses on the adaptive observer design for nonlinear discrete‐time MIMO systems with unknown time‐delay and nonlinear dynamics. The delayed states involved in the system are arguments of a nonlinear function and only the estimated delay is utilized. By constructing an appropriate Lyapunov–Krasovskii function, the delay estimation error is considered in the observer parameter design. The proposed method is then extended to the system with a nonlinear output measurement equation and the delayed dynamics. With the help of a high‐order neural network (HONN), the requirement for a precise system model, the linear‐in‐the‐parameters (LIP) assumption of the delayed states, the Lipschitz or norm‐boundedness assumption of unknown nonlinearities are removed. A novel converse Lyapunov technical lemma is also developed and used to prove the uniform ultimate boundedness of the proposed observer. The effectiveness of the proposed results is verified by simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号