首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time and space assembly line balancing considers realistic multiobjective versions of the classical assembly line balancing industrial problems involving the joint optimization of conflicting criteria such as the cycle time, the number of stations, and/or the area of these stations. In addition to their multi-criteria nature, the different problems included in this field inherit the precedence constraints and the cycle time limitations from assembly line balancing problems, which altogether make them very hard to solve. Therefore, time and space assembly line balancing problems have been mainly tackled using multiobjective constructive metaheuristics. Global search algorithms in general - and multiobjective genetic algorithms in particular - have shown to be ineffective to solve them up to now because the existing approaches lack of a proper design taking into account the specific characteristics of this family of problems. The aim of this contribution is to demonstrate the latter assumption by proposing an advanced multiobjective genetic algorithm design for the 1/3 variant of the time and space assembly line balancing problem which involves the joint minimization of the number and the area of the stations given a fixed cycle time limit. This novel design takes the well known NSGA-II algorithm as a base and considers the use of a new coding scheme and sophisticated problem specific operators to properly deal with the said problematic questions. A detailed experimental study considering 10 different problem instances (including a real-world instance from the Nissan plant in Barcelona, Spain) will show the good yield of the new proposal in comparison with the state-of-the-art methods.  相似文献   

2.
Designing and operating two-sided assembly lines are crucial for manufacturing companies which assemble large-sized products such as trucks, buses and industrial refrigerators. This type of assembly line structure has several advantages over one-sided assembly lines such as shortened line length and reduced throughput time. The research area has recently focused on balancing two-sided assembly lines owing to these advantages. However, due to the complex structure of this problem, some practical constraints have been disregarded or have not been fully incorporated. In order to overcome these deficiencies, a fully constrained two-sided assembly line balancing problem is addressed in this research paper. Initially, a mathematical programming model is presented in order to describe the problem formally. Due to the problem complexity, two different swarm intelligence based search algorithms are implemented to solve large-sized instances. Bees algorithm and artificial bee colony algorithm have been applied to the fully constrained two-sided assembly line balancing problem so as to minimize the number of workstations and to obtain a balanced line. An extensive computational study has also been performed and the comparative results have been evaluated.  相似文献   

3.
应用遗传算法解决装配线平衡问题   总被引:3,自引:0,他引:3  
文章针对装配线平衡问题,提出了一种周期性自适应交换、变异遗传算法,通过实验求解表明,该算法是解决装配线问题的有效算法,很好地解决了简单遗传算法容易早熟收敛的问题,大大改善了简单遗传算法的性能。  相似文献   

4.
Fuzzy assembly line balancing using genetic algorithms   总被引:2,自引:0,他引:2  
In this paper, we implement genetic algorithms to synthesis fuzzy assembly line balancing problem which is well-known as a NP-hard problem. The genetic operators concerned with the feasibility of chromosomes will be discussed, and its performance will be shown with a numerical example.  相似文献   

5.
遗传算法在服装生产流水线平衡问题中的应用   总被引:5,自引:0,他引:5  
将遗传算法应用于服装生产调度中,利用遗传算法的全局优化特点解决并行制造中的流水线平衡问题。并针对男式衬衫的生产工艺进行仿真,结果表明了该算法的有效性。  相似文献   

6.
The assembly line balancing problem is a non deterministic polynomial type planning problem for mass production. Layout design changes constitute a major decision that yields investment for assembly operations and numerous heuristics have been reported in the literature for solving the line balancing problems. U-shaped assembly layout offers several benefits over traditional straight-line layout in implementation of lean manufacturing and Just-In-Time technology. In the paper an attempt has been made to evaluate labor productivity in U-shaped line system and straight line system. A Critical Path Method (CPM) based approach for U-shaped assembly line has been applied for assigning the task to the work stations for assembly line layout. Results show that the CPM based U-shaped approach performs better and improve the labor productivity of assembly line layout.  相似文献   

7.
Certain types of manufacturing processes can be modelled by assembly line balancing problems. In this work we deal with a specific assembly line balancing problem that is known as the assembly line worker assignment and balancing problem (ALWABP). This problem appears in settings where tasks must be assigned to workers, and workers to work stations. Task processing times are worker specific, and workers might even be incompatible with certain tasks. The ALWABP was introduced to model assembly lines typical for sheltered work centers for the Disabled.  相似文献   

8.
给出了用于求解装配线平衡的遗传算法。在此基础上,分析了装配线平衡系统的功能和工作机理。并采用面向对象语言开发了装配线平衡系统。最后将此系统用于某装配线的平衡,并依据平衡结果进行仿真,证明该算法效果较好。利用该系统可以有效地解决装配线平衡问题,大大降低成本,为提高装配线的生产效率和改进装配线提供了技术依据。  相似文献   

9.
Multi-criteria decision making for assembly line balancing   总被引:1,自引:0,他引:1  
Assembly line balancing often has significant impact on performance of manufacturing systems, and is usually a multiple-objective problem. Neither an algorithmic nor a procedural assembly line balancing methodology is usually effective in solving these problems. This article proposes a data envelopment analysis (DEA) approach to solve an assembly line balancing problem. A computer-aided assembly line balancing tool as Flexible Line Balancing software is used to generate a considerable number of solutions alternatives as well as to generate quantitative decision-making unit outputs. The quantitative performance measures were considered in this article. Then DEA was used to solve the multiple-objective assembly line balancing problem. An illustrative example shows the effectiveness of the proposed methodology.  相似文献   

10.
Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred over the traditional single-model assembly lines.

This paper presents a mathematical programming model and an iterative genetic algorithm-based procedure for the mixed-model assembly line balancing problem (MALBP) with parallel workstations, in which the goal is to maximise the production rate of the line for a pre-determined number of operators.

The addressed problem accounts for some relevant issues that reflect the operating conditions of real-world assembly lines, like zoning constraints and workload balancing and also allows the decision maker to control the generation of parallel workstations.  相似文献   


11.
In a robotic assembly line, a series of stations are arranged along a conveyor belt and a robot performs on tasks at each station. Parallel assembly lines can provide improving line balance, productivity and so on. Combining robotic and parallel assembly lines ensure increasing flexibility of system, capacity and decreasing breakdown sensitivity. Although aforementioned benefits, balancing of robotic parallel assembly lines is lacking – to the best knowledge of the authors- in the literature. Therefore, a mathematical model is proposed to define/solve the problem and also iterative beam search (IBS), best search method based on IBS (BIBS) and cutting BIBS (CBIBS) algorithms are presented to solve the large-size problem due to the complexity of the problem. The algorithm also tested on the generated benchmark problems for robotic parallel assembly line balancing problem. The superior performances of the proposed algorithms are verified by using a statistical test. The results show that the algorithms are very competitive and promising tool for further researches in the literature.  相似文献   

12.
Genetic algorithms for sequencing problems in mixed model assembly lines   总被引:1,自引:0,他引:1  
Mixed model assembly lines are a type of production line where a variety of product models similar in product characteristics are assembled. The effective utilisation of these lines requires that a schedule for assembling the different products be determined. In this paper, the performance of genetic algorithms for sequencing problems in mixed model assembly lines is investigated. The problem first considered is a comparison between a existing heuristic and the proposed genetic algorithm to get the constant usage of every part used by the line considering variation at multi levels (Number of levels fixed as four. level 1—product, level 2—subassembly, level 3—component, level 4—raw-materials) for various test-bed problems. The algorithms proposed by Miltenburg and Sinnamon hereafter referred to as MS 1992 [IIE Trans. 24 (1992) 121] and the proposed genetic algorithm (GA) applied to mixed model assembly line are compared. Results of evaluation indicate that the GA performs better over MS1992 on 25 of the 40 problems investigated.

The other problem solved is a multiple objective sequencing problem in mixed model assembly lines. Three practically important objectives are minimizing total utility work keeping a constant rate of part-usage, minimizing the variability in parts usage and minimizing total setup cost. In this paper, the performance of the selection mechanisms, the Pareto stratum-niche cubicle and the selection based on scalar fitness function value are compared with respect to the objective of minimising variation in part-usage, minimising total utility work and minimising the setup cost. Results of evaluation indicate that the genetic algorithm that uses the Pareto stratum-niche cubicle performs better than the genetic algorithm with the other selection mechanisms.  相似文献   


13.
A Knowledge Based Design Methodology for manufacturing assembly lines   总被引:1,自引:0,他引:1  
In assembly line design, the problem of balancing has received most attention from past researchers, and a number of algorithms have been devised for the analysis of single, multi- and mixed-product assembly lines [Int. J. Prod. Res. 27 (1989) 637]. In many cases, such algorithms seek a solution for the particular situation, which is under consideration and therefore have very little flexibility for generic application to assembly line design. Real life practical design issues include stochastic operation times, parallel workstation requirements, feasibility for workstation combining, and parallel line implementations, all of which are features which are ignored in many analyses. This paper presents a Knowledge Based Design Methodology (KBDM) for automated and manual assembly lines, which can be applied equally well to single, multi- and mixed-product assembly lines with either deterministic operation times or stochastic operation times. The methodology starts from a suitable assembly system selection and thereafter decides suitable cycle times, parallel workstation requirements, and parallel line implementation for the type of assembly system being selected. An economical number of workstations are decided with the aid of workstation combining options depending upon the factual information provided. The end result is the detailed design of a manufacturing assembly line. A case study from a practical assembly line is presented to illustrate how the KBDM works.  相似文献   

14.
Load balancing is a very important and complex problem in computational grids. A computational grid differs from traditional high performance computing systems in the heterogeneity of the computing nodes and communication links, as well as background workloads that may be present in the computing nodes. There is a need to develop algorithms that could capture this complexity yet can be easily implemented and used to solve a wide range of load balancing scenarios. Artificial life techniques have been used to solve a wide range of complex problems in recent times. The power of these techniques stems from their capability in searching large search spaces, which arise in many combinatorial optimization problems, very efficiently. This paper studies several well-known artificial life techniques to gauge their suitability for solving grid load balancing problems. Due to their popularity and robustness, a genetic algorithm (GA) and tabu search (TS) are used to solve the grid load balancing problem. The effectiveness of each algorithm is shown for a number of test problems, especially when prediction information is not fully accurate. Performance comparisons with Min-min, Max-min, and Sufferage are also discussed.  相似文献   

15.
An enhanced genetic algorithm for automated assembly planning   总被引:15,自引:0,他引:15  
Automated assembly planning reduces manufacturing manpower requirements and helps simplify product assembly planning, by clearly defining input data, and input data format, needed to complete an assembly plan. In addition, automation provides the computational power needed to find optimal or near-optimal assembly plans, even for complex mechanical products. As a result, modern manufacturing systems use, to an ever greater extent, automated assembly planning rather than technician-scheduled assembly planning. Thus, many current research reports describe efforts to develop more efficient automated assembly planning algorithms. Genetic algorithms show particular promise for automated assembly planning. As a result, several recent research reports present assembly planners based upon traditional genetic algorithms. Although prior genetic assembly planners find improved assembly plans with some success, they also tend to converge prematurely at local-optimal solutions. Thus, we present an assembly planner, based upon an enhanced genetic algorithm, that demonstrates improved searching characteristics over an assembly planner based upon a traditional genetic algorithm. In particular, our planner finds optimal or near-optimal solutions more reliably and more quickly than an assembly planner that uses a traditional genetic algorithm.  相似文献   

16.
There is a growing research interest on the application of evolutionary computation-based techniques in manufacturing optimization due to the fact that this field is associated with a plethora of complex combinatorial optimization problems. Differential evolution (DE), one of the latest developed evolutionary algorithms, has rarely been applied on manufacturing optimization problems (MOPs). A possible reason for the absence of DE from this research field is that DE was introduced as global optimizer over continuous spaces, while most of MOPs are of combinatorial nature with discrete decision variables. DE maintains and evolves floating-point vectors and therefore its application to MOPs that have solutions represented by permutations is not straightforward. This paper investigates the use of DE for the solution of the simple assembly line balancing problem (SALBP), a well-known NP-hard MOP. Two basic formulation types for SALBP are examined, namely type-1 and type-2: the former attempts to minimize the number of workstations required to manufacture a product in an assembly line for a given fixed cycle time; while the latter attempts to minimize the cycle time of the line for a given number of stations. Extensive experiments carried out over public benchmarks test instances estimate the performance of DE approach.  相似文献   

17.
The use of intelligent techniques in the manufacturing field has been growing the last decades due to the fact that most manufacturing optimization problems are combinatorial and NP hard. This paper examines recent developments in the field of evolutionary computation for manufacturing optimization. Significant papers in various areas are highlighted, and comparisons of results are given wherever data are available. A wide range of problems is covered, from job shop and flow shop scheduling, to process planning and assembly line balancing  相似文献   

18.
蚁群算法求解装配线平衡第一类问题   总被引:2,自引:0,他引:2       下载免费PDF全文
装配线平衡问题是生产管理中重要且较难解决的问题,其中第一类问题是装配线平衡问题的关键问题。本文通过对装配线平衡问题的分析与建模,提出了利用蚁群算法这种人工智能优化算法求解一般装配线平衡第一类问题的步骤和算法。采用启发式的方法构造分配方案的生成策略,并对信息素的更新采用局部更新与全局更新相结合的规则,从而使得该算法具有较好的目的性,大大提高了获得最优解的效率。通过该蚁群算法能得到装配线平衡第一类问题质量较优的解,且有速度快、鲁棒性、通用性等优势。  相似文献   

19.
Avoiding work overload (imbalance) in mixed model U-line production systems entails an investigation into both balancing and sequencing problems at the same time and that is why some authors have considered both planning problems simultaneously. However because of the existing differences between planning horizons of balancing and sequencing problems (the former is a long to mid-term planning problem whereas the latter has a short term planning horizon) this simultaneous approach is only practical under very special conditions. It is also known that installation of an assembly line usually needs considerable capital investments and consequently it is necessary to design and balance such a system so that it works as efficiently as possible. To do so, in this paper, we develop a new approach to balance a mixed model U-shaped production system independent of what product sequences may be. This new approach is based on minimization of crossover workstations. Due to utilization of crossover workstations, balancing mixed model assembly lines in U-shaped line layouts is more complicated than that of straight lines. Some kind of issues including the ‘model mixes’ appearing in such workstations and the time taken for an operator to move from one side of the line to another increase the complexity of mixed model U-line balancing problems (MMULBP). Therefore it seems reasonable to develop a model in which minimizing the number of crossover workstations and maximizing the line efficiency are considered at the same time. Such a model is presented in this paper. In the proposed model, minimizing the variation of workload is also considered and taking into account operator's travel times, an extra time is assigned to workload of crossover workstations. Furthermore a genetic algorithm (GA) is proposed and a number of well-known test problems are solved by the GA and the related results are illustrated. Finally, the conclusion is presented.  相似文献   

20.
Assembly line balancing plays a crucial role in modern manufacturing companies in terms of the growth in productivity and reduction in costs. The problem of assigning tasks to consecutive stations in such a way that one or more objectives are optimized subject to the required tasks, processing times and some specific constraints is called the assembly line balancing problem (ALBP). Depending on production tactics and distinguishing working conditions in practice, assembly line systems show a large diversity. Although, a growing number of researchers addressed ALBP over the past fifty years, real-world assembly systems which require practical extensions to be considered simultaneously have not been adequately handled. This study deals with an industrial assembly system belonging to the class of two-sided line with additional assignment restrictions which are often encountered in practice. Teaching–learning based optimization (TLBO), which is a recently developed nature-inspired search method, is employed to solve the line balancing problem. Computational results are compared with the current situation in terms of the line efficiency, and the solution structure with workload assigned to the stations is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号