首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The control issues in nonlinear trajectory tracking of an autonomous underwater vehicle (AUV) are a challenging task due to the complex oceanic environment, highly nonlinear coupled dynamics, imprecise hydrodynamic coefficients and unpredictable external disturbances such as ocean waves, current fluctuations and tides. This paper addresses an adaptive fuzzy PI sliding mode control (AFPISMC) for trajectory tracking control of AUV to achieve high precise maneuvering in undersea environment. An AFPISMC is basically comprised of an equivalent control based on approximately known inverse dynamic model output and continuous adaptive PI term is designed to eliminate chattering effect. Furthermore, it does not require a priori knowledge of upper bounds on uncertainties in the dynamic parameters of an AUV. In this approach, decoupled single input fuzzy PI control strategy is employed along with a reduced rule base and self-tuning control law is derived to modify hitting gain in order to enhance tracking response. The overall control scheme guarantees the global asymptotic stability based on Lyapunov theory. Finally, the effectiveness and robustness of the proposed approach are demonstrated through simulation and comparison studies.  相似文献   

2.
The control of tank systems in industrial applications is an important issue for monitoring the chemical processes involved in the manufacture and delivery of product. The most important reason to control the tank systems is to keep the liquid level in the tanks constant and at the desired level for a specified period of time. In this study, the sliding mode control (SMC) with a repetitive approach called backstepping that is insensitive to uncertainties in system parameters and input disturbances is proposed and experimentally applied to a quadruple, cross‐coupled, uncertain, nonlinear, and multiple‐input/multiple‐output tank system. A proportional‐integral (PI) control is used to reduce the steady‐state error caused by the parameter variations and external noises. The traditional way of introducing PI usually leads to sliding surfaces. In this paper, the PI action is introduced to the control signal. The proposed backstepping sliding mode PI control (BSMPIC) is applied to such a complex tank system for the first time. The experimental results are compared with those of the SMC, sliding mode PI control, and backstepping sliding mode control to see the effect of the proposed BSMPIC on the system. As a result of the comparison, it is observed that less overshoot and tracking error, better tracking performance, and faster rise time in the transient regime is obtained by the BSMPIC.  相似文献   

3.
Hydraulic servo control systems have been used widely in industry. Within the realm of hydraulic control systems, conventional hydraulic valve‐controlled systems have higher response and lower energy efficiency, whereas hydraulic displacement‐controlled servo systems have higher energy efficiency. This paper aims to investigate the velocity control performance of an electro‐hydraulic displacement‐controlled system (EHDCS), where the controlled hydraulic cylinder is altered by a variable displacement axial piston pump to achieve velocity control. For that, a novel adaptive fuzzy controller with self‐tuning fuzzy sliding‐mode compensation (AFC‐STFSMC) is proposed for velocity control in EHDCS. The AFC‐STFSMC approach combining adaptive fuzzy control and the self‐tuning fuzzy sliding‐mode control scheme, has the advantages of the capability of automatically adjusting the fuzzy rules and of reducing the fuzzy rules. The proposed AFC‐STFSMC scheme can design the sliding‐mode controller with no requirement on the system dynamic model, and it can be free of chattering, thereby providing stable tracking control performance and robustness against uncertainties. Moreover, the stability of the proposed scheme via the Lyapunov method is proven. Therefore, the velocity control of EHDCS controlled by AFC‐STFSMC is implemented and verified experimentally in different velocity targets and loading conditions. The experimental results show that the proposed AFC‐STFSMC method can achieve good velocity control performance and robustness in EHDCS with regard to parameter variations and external disturbance. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
This paper describes the design of a robust adaptive fuzzy controller for an uncertain single‐input single‐output nonlinear dynamical systems. While most recent results on fuzzy controllers considers affine systems with fixed rule‐base fuzzy systems, we propose a control scheme for non‐affine nonlinear systems and a dynamic fuzzy rule activation scheme in which an appropriate number of the fuzzy rules are chosen on‐line. By using the proposed scheme, we can reduce the computation time, storage space, and dynamic order of the adaptive fuzzy system without significant performance degradation. The Lyapunov synthesis approach is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as for all other signals in the closed loop. No a priori knowledge of an upper bounds on the uncertainties is required. The theoretical results are illustrated through a simulation example. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A robust fault‐tolerant attitude control scheme is proposed for a launch vehicle (LV) in the presence of unknown external disturbances, mismodeling dynamics, actuator faults, and actuator's constraints. The input‐output representation is employed to describe the rotational dynamics of LV rendering three independently decoupled second order single‐input‐single‐output (SISO) systems. In the differential algebraic framework, general proportional integral (GPI) observers are used for the estimations of the states and of the generalized disturbances, which include internal perturbations, external disturbances, and unknown actuator failures. In order to avoid the defects of the conventional sliding surface, a new nonlinear integral sliding manifold is introduced for the robust fault‐tolerant sliding mode controller design. The stability of the GPI observer and that of the closed‐loop system are guaranteed by Lyapunov's indirect and direct methods, respectively. The convincing numerical simulation results demonstrate the proposed control scheme is with high attitude tracking performance in the presence of various disturbances, actuator faults, and actuator constraints.  相似文献   

6.
Abstract: This paper describes the development and tuning methods for a novel self-organizing fuzzy proportional integral derivative (PID) controller. Before applying fuzzy logic, the PID gains are tuned using a conventional tuning method. At supervisory level, fuzzy logic readjusts the PID gains online. In the first tuning method, fuzzy logic at the supervisory level readjusts the three PID gains during the system operation. In the second tuning method, fuzzy logic only readjusts the proportional PID gain, and the corresponding integral and derivative gains are readjusted using the Ziegler–Nichols tuning method while the system is in operation. For the compositional rule of inferences in the fuzzy PID and the self-organizing fuzzy PID schemes two new approaches are introduced: the min implication function with the mean of maxima defuzzification method, and the max-product implication function with the centre of gravity defuzzification method. The fuzzy PID controller, the self-organizing fuzzy PID controller and the PID controller are all applied to a non-linear revolute-joint robot arm for step input and path tracking experiments using computer simulation. For the step input and path tracking experiments, the novel self-organizing fuzzy PID controller produces a better output response than the fuzzy PID controller; and in turn both controllers exhibit better process output than the PID controller.  相似文献   

7.
We address the sliding mode control design problem for output reference trajectory tracking problems in the special class of MIMO flat systems known as static feedback linearizable systems. We assume unavailable system state components but rely on available inputs and measurable flat outputs. Each controller will largely ignore state and control input couplings by adopting a standard sliding mode controller scheme derived from the SISO case and used this as decoupled input‐to‐flat‐output model. The standard controller arises from a vastly simplified pure integration, additively perturbed, system. The simplified pure integration system controlled trajectories are shown to be time‐scale homotopically equivalent to those of the nonlinear flat system. The basic sliding surface coordinate function design is approached from the perspective of structural integral reconstructors requiring only the inputs and the flat outputs of the system. Integral structural reconstructors were introduced by Fliess et al for the control of linear SISO and MIMO systems, giving rise to the generalized proportional integral control method. Simulations are presented for SISO and MIMO systems and experimental results are reported for a two‐degree‐of‐freedom fully actuated robotic manipulator.  相似文献   

8.
This paper presents an intelligent control approach that incorporates sliding mode control (SMC) and fuzzy neural network (FNN) into the implementation of back‐stepping control for a path tracking problem of a dual‐arm wheeled mobile manipulator subject to dynamic uncertainties and nonholonomic constraints. By using the back‐stepping technique, the system equations are reformulated into two levels: the kinematic level and the dynamic level. A sliding manifold is constructed by considering the disturbance free kinematic level equations only. With all the system uncertainties concentrated in the dynamic level, an FNN controller associated with a switching type of control law is employed to enforce sliding mode on the prescribed manifold. All parameter adjustment rules for the proposed controller are derived from the Lyapunov theory such that uniform ultimate boundedness for both the tracking error and the FNN weighting updates is ensured. A simulation study, which compares different control design approaches, is included to illustrate the promise of the proposed SMC–FNN method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Fuzzy sliding mode control for a robot manipulator   总被引:1,自引:0,他引:1  
This work presents the design of a robust control system using a sliding mode controller that incorporates a fuzzy control scheme. The presented control law superposes a sliding mode controller and a fuzzy logic controller. A fuzzy tuning scheme is employed to improve the performance of the control system. The proposed fuzzy sliding mode control (FSMC) scheme utilizes the complementary cooperation of the traditional sliding mode control (SMC) and the fuzzy logic control (FLC). In other words, the proposed control scheme has the advantages which it can guarantee the stability in the sense of Lyapunov function theory and can ameliorate the tracking errors, compared with the FLC and SMC, respectively. Simulation results for the trajectory tracking control of a two-link robot manipulator are presented to show the feasibility and robustness of the proposed control scheme. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

10.
In this paper, a stable adaptive fuzzy-based tracking control is developed for robot systems with parameter uncertainties and external disturbance. First, a fuzzy logic system is introduced to approximate the unknown robotic dynamics by using adaptive algorithm. Next, the effect of system uncertainties and external disturbance is removed by employing an integral sliding mode control algorithm. Consequently, a hybrid fuzzy adaptive robust controller is developed such that the resulting closed-loop robot system is stable and the trajectory tracking performance is guaranteed. The proposed controller is appropriate for the robust tracking of robotic systems with system uncertainties. The validity of the control scheme is shown by computer simulation of a two-link robotic manipulator.  相似文献   

11.
This paper deals with applications of sliding‐mode‐based fractional control techniques to address tracking and stabilization control tasks for some classes of nonlinear uncertain fractional‐order systems. Both single‐input and multi‐input systems are considered. A second‐order sliding‐mode approach is taken, in suitable combination with PI‐based design, in the single‐input case, while the unit‐vector approach is the main tool of reference in the multi‐input case. Sliding manifolds containing fractional derivatives of the state variables are used in the present work. Constructive tuning conditions for the control parameters are derived by Lyapunov analysis, and the convergence properties of the proposed schemes are supported by simulation results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large-scale systems with unknown bounds of high-order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNNs) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the "discontinuous" sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. Two examples are presented to support the validity of the new controller. The simulation results show that the FNNSMC is more robust than the SMC.  相似文献   

13.
Proxy-based sliding mode control, created by Ryo Kikuuwe and Hideo Fujimoto, combines the advantages of sliding mode control and proportional integral derivative controller. This paper implements this control algorithm on a platform of 3 degrees of freedom (3-DOF) driven by electropneumatic actuators with proportional flow valves. This paper presents an extension of proxy-based sliding mode control. This time it is implemented on a parallel robot. Despite the robot being a coupled system, is reached a perfect decoupled control. The simulations in MSC-ADAMS and experimental results demonstrate good tracking.  相似文献   

14.
In this article, a novel data‐driven robust backstepping control (DRBC) approach for tracking of unmanned surface vehicles (USVs) with uncertainties and unknown parametric dynamics has been developed. Main contributions are fourfold: (a) Unlike previous approaches, within the DRBC scheme, backstepping decoupled technique and data‐driven sliding‐mode control (DSMC) can be effectively cohered. (b) Using backstepping philosophy, a new data‐driven PI‐type sliding‐mode surface is devised, such that strong robustness with simple structure can be ensured. (c) Complex unknowns including couplings, uncertainties and parametric dynamics are sufficiently lumped, and are totally compensated by the extended state observer. (d) The entire DRBC scheme eventually achieves accurate tracking of USVs with strong couplings, uncertainties and unknown parametric dynamics. The efficacy and superiority of the proposed DRBC approach is validated on a prototype USV.  相似文献   

15.
This paper proposes a trajectory tracking scheme which belongs to the sliding mode control (SMC) for the 4-degree-of-freedom (DOF) parallel robots. Two fuzzy logic systems (FLS) are first put forward to replace the constant switching control gain and the width of the boundary layer. The fuzzy adaptive supervisory controller (FASC) is combined with the fuzzy sliding mode control (FSMC) to further reduce the chattering. The design is simple and less fuzzy rules are required. The simulation results demonstrate that the chattering of the SMC is reduced greatly and the parallel robot realizes the trajectory tracking with very good robustness to the parameter uncertainties and external disturbances.  相似文献   

16.
In this article, a control design concept using fuzzy sets for an induction motor is presented. The aim of the proposed modelling approach is to provide a fuzzy set-based representation of the cascade sliding mode control of an induction motor fed by PWM voltage source inverter, which operates in a fixed reference frame. For this purpose, a new decoupled and reduced model is first proposed. Then, a set of simple surfaces and associated control laws are synthesised. A piecewise smooth control function with a threshold is adopted. However, the magnitude of this function depends closely on the upper bound of uncertainties, which include parameter variations and external disturbances. This bound is difficult to obtain prior to motor operation. To solve this problem, a fuzzy modelling approach is presented to improve the design and tuning of a fuzzy logic controller using variable structure control theory. The robust fuzzy control design is made feasible without resorting to model simplification or imposing restrictive conditions on the system uncertainty. The fuzzy controller is designed in order to improve the control performances and to reduce the control energy and the chattering phenomenon. Simulation results reveal some very interesting features and show that the proposed fuzzy sliding mode controller could be considered as an alternative to the conventional sliding mode control of induction motors.  相似文献   

17.
This paper considers the tracking control problem of a class of second‐order mechanical systems involving parametric uncertainty and external disturbance by a sliding mode control (SMC) without reaching phase. Specifically, an SMC strategy with modified variable‐gain proportional–integral–derivative (PID)‐type sliding function is proposed, by which the existence of a sliding mode throughout an entire response of the system starting from the initial time instance is ensured. Meanwhile, the introduction of a variable gain in the sliding function design effectively solves the dilemma between quicker response and smaller overshoot. The effectiveness of the proposed strategy is verified by both theoretical analysis and simulation results.  相似文献   

18.
Fuzzy controller design includes both linear and non-linear dynamic analysis. The knowledge base parameters associated within the fuzzy rule base influence the non-linear control dynamics while the linear parameters associated within the fuzzy output signal influence the overall control dynamics. For distinct identification of tuning levels, an equivalent linear controller output and a normalized non-linear controller output are defined. A linear proportional-integral-derivative (PID) controller analogy is used for determining the linear tuning parameters. Non-linear tuning is derived from the locally defined control properties in the non-linear fuzzy output. The non-linearity in the fuzzy output is then represented in a graphical form for achieving the necessary non-linear tuning. Three different tuning strategies are evaluated. The first strategy uses a genetic algorithm to simultaneously tune both linear and non-linear parameters. In the second strategy the non-linear parameters are initially selected on the basis of some desired non-linear control characteristics and the linear tuning is then performed using a trial and error approach. In the third method the linear tuning is initially performed off-line using an existing linear PID law and an adaptive non-linear tuning is then performed online in a hierarchical fashion. The control performance of each design is compared against its corresponding linear PID system. The controllers based on the first two design methods show superior performance when they are implemented on the estimated process system. However, in the presence of process uncertainties and external disturbances these controllers fail to perform any better than linear controllers. In the hierarchical control architecture, the non-linear fuzzy control method adapts to process uncertainties and disturbances to produce superior performance.  相似文献   

19.
机械手的模糊逆模型鲁棒控制   总被引:3,自引:0,他引:3  
提出一种基于模糊聚类和滑动模控制的模糊逆模型控制方法,并将其应用于动力学 方程未知的机械手轨迹控制.首先,采用C均值聚类算法构造两关节机械手的高木-关野 (T-S)模糊模型,并由此构造模糊系统的逆模型.然后,在提出的模糊逆模型控制结构中, 离散时间滑动模控制和时延控制(TDC)用于补偿模糊建模误差和外扰动,保证系统的全局 稳定性并改进其动态和稳态性能.系统的稳定性和轨迹误差的收敛性可以通过稳定性定理来 证明.最后,以两关节机械手的轨迹跟随控制为例,揭示了该设计方法的控制性能.  相似文献   

20.
In this paper a novel hybrid direct/indirect adaptive fuzzy neural network (FNN) moving sliding mode tracking controller for chaotic oscillation damping of power systems is developed. The proposed approach is established by providing a tradeoff between the indirect and direct FNN controllers. It is equipped with a novel moving sliding surface (MSS) to enhance the robustness of the controller against the present system uncertainties and unknown disturbances. The major contribution of the paper arises from the new simple tuning idea of the sliding surface slope and intercept of the MSS. This study is novel because the approach adopted tunes the sliding surface slope and intercept of MSS using two simple rules simultaneously. One advantage of the proposed approach is that the restriction of knowing the bounds of uncertainties is also removed due to the adaptive mechanism. Moreover, the stability of the control system is also presented. The proposed controller structure is successfully employed to damp the complicated chaotic oscillations of an interconnected power system, when such oscillations can be made by load perturbation of a power system working on its stability edges. Comparative simulation results are presented, which confirm that the proposed hybrid adaptive type‐2 fuzzy tracking controller shows superior tracking performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号