首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在理论上从广义傅立叶-梅林矩人手对变形雅可比(p=4,q=3)-傅立叶矩进行了归一化,得到了平移、灰度、尺度、旋转等多畸变不变矩,同时用实验数据证明了该矩具有较理想的多畸变不变性.用类六边形抽样算法来提高变形雅可比(p=4,q=3)-傅立叶矩的图像数字化质量,减少量化误差.用加权最小平均距离规则,在34维特征空间中进行四类物体的平移、旋转、灰度以及缩放变化后的16个变形体进行了形状识别实验,实验结果表明误判率为零.  相似文献   

2.
图像特征识别方法研究   总被引:5,自引:9,他引:5  
图像特征识别的方法及其技术实现系当前模式识别研究领域中最为热门的研究课题之一。本文针对NMI(归一化转动惯量)特征识别、不变矩特征识别和比例特征识别三种图像特征识别方法.通过实验分析了该三种识别方法的缩放不变性、旋转不变性、平移不变性以及不同物体之间的特征差异。实验数据显示NMI特征识别方法具有最佳的识别效果和最快的处理速度。  相似文献   

3.
用于模式识别的极半径不变矩   总被引:4,自引:0,他引:4  
提出了用于目标物识别和分类的极半径不变矩,对目标物进行分割后,先求出目标物的形心,进而求出极半径矩、归一化矩和归一化的中心矩,在此基础上,给出了5个具有平移、旋转和尺度变换不变性的特征量用于物体形状的识别,文中给出了这些不变矩的特性,并给出了极半径不变矩和边界序列矩以及Hu提出的不变矩的实验比较结果,该文提出的极半径不变矩,既可用于区域目标的识别,也可用于边界形状的识别。  相似文献   

4.
基于自相关图像的纹理特征检索的研究   总被引:1,自引:0,他引:1  
针对图像检索时的平移、旋转及尺度变化问题,提出了一种基于自相关图像的不变性纹理特征提取方法.首先,用FFT、IFFT快速算法计算图像的自相关图像,消除平移影响,然后对自相关图像进行log-极坐标变化,这样就将旋转和尺度变化转为了平移,再用具有平移不变性的双树复小波进行分解,就可以提取出平移、旋转和尺度不变的特征向量.采用Canberra距离进行相似性度量.通过对发生几何变化的纹理图像库的实验表明,该方法对图像的平移、旋转和尺度变化具有较好的鲁棒性.  相似文献   

5.
基于不变矩特征和神经网络的人脸识别模型   总被引:9,自引:1,他引:9  
不变矩是图像的一种统计特征,具有平移不变性、旋转不变性和比例不变性,广泛应用于图像识别。该文将图像矩阵的不变矩作为识别特征,建立了人脸识别模型。将人脸图像经过不变矩特征提取、不变矩矢量标准化及不变矩矢量排列处理后,运用BP网络进行识别,经过竞争选择,获得识别结果。利用ORL人脸数据库进行仿真实验,结果表明,该文的人脸识别模型实现简单、识别率高、训练速度与识别速度较快、便于实时实现。  相似文献   

6.
提出一种基于Krawtchouk矩的水印算法,通过修改一些原始Krawtchouk矩并重构图像以获得水印图像.基于Krawtchouk矩与几何矩的关系,提出采用具有平移、比例缩放和旋转不变性的几何不变矩来检测水印.实验表明,与用Krawtchouk不变矩检测相比,该算法对于大角度旋转和图像平移的几何攻击具有更好的鲁棒性.  相似文献   

7.
基于形状不变矩的图像检索算法的研究   总被引:10,自引:0,他引:10  
描述了一种基于Hu形状不变矩的图像全局形状特征提取方法和算法IMS。实验结果表明,使用IMS。算法提取的形状特征向量具有对平移、旋转和尺度变化的不变性,适合于进行图像形状的检索。  相似文献   

8.
小波矩结合了矩特征和小波特征,既反映了图像的全局性信息,又反映了图像的局域性信息,并且具有旋转、平移和缩放不变性.利用小波矩与支持向量机进行目标识别,不但解决了图像识别中特征量随图像旋转、平移和缩放而变化的问题,而且提高了对近似物体的识别能力,是解决小样本、近似图像识别的有效方法.  相似文献   

9.
为了克服车牌字符的倾斜和相似字符间的误识别对字符识别带来的影响,提出了一种基于不变矩的匹配算法.利用不变矩的旋转不变性克服字符倾斜带来的影响.对不变矩算法进行改进,增加了5个新的不变矩量,包含了更多的细节特征,并用原点矩代替中心矩,减少平移不变性带来的误差,解决了相似字符间的误识别.实验证明了方法的正确性和可行性.  相似文献   

10.
针对目前比较流行的一维条形码和二维条形码识别算法存在对几何失真图像的识别准确率较低的问题,提出了一种新的基于不变矩和BP网络的条形码识别方法,提取不变矩特征向量作为特征值输入BP网络,对其进行训练与测试,利用训练好的BP网络对形变条形码图像进行识别,实现了对存在旋转、平移和缩放等几何失真的条形码图像的正确识别.实验结果表明,基于Hu不变矩和BP网络的条形码识别方法具有很强的抗图像平移、拉伸和旋转识别能力,并且具有实现简单、训练速度快、识别率高等特点.  相似文献   

11.
由于正交矩对噪声鲁棒性强、重建效果好,因此被广泛应用于目标识别与分类中,但是正交矩本质上缺乏尺度变换不变性,而且必要的图像二值化与规一化过程会引入重采样与重量化误差。为此,在研究现有正交矩的基础上,提出了一种基于Radon变换和解析FourierMellin变换的尺度与旋转不变的目标识别算法。该算法首先直接对目标灰度图像进行Radon变换,然后对Radon变换结果进行进一步解析,通过FourierMellin变换将原图像的旋转变化转化为相位变化,将原图像的尺度变化转化为幅度变化;最后,通过定义一旋转与尺度不变函数,同时利用不变函数的4种特征,再应用k近邻法实现分类。理论与实验结果表明,由于避免了正交矩方法存在的重采样与重量化误差,该算法的分类精度高于基于正交矩的分类方法,而且对白噪声的鲁棒性也显著高于基于正交矩的识别与分类方法。  相似文献   

12.
由于正交矩对噪声鲁棒性强、重建效果好,因此被广泛应用于目标识别与分类中,但是正交矩本质上缺乏尺度变换不变性,而且必要的图像二值化与规一化过程会引入重采样与重量化误差。为此,在研究现有正交矩的基础上,提出了一种基于Radon变换和解析Fourier-Mellin变换的尺度与旋转不变的目标识别算法。该算法首先直接对目标灰度图像进行Radon变换,然后对Radon变换结果进行进一步解析,通过Fourier-Mellin变换将原图像的旋转变化转化为相位变化,将原图像的尺度变化转化为幅度变化;最后,通过定义一旋转与尺度不变函数,同时利用不变函数的4种特征,再应用k-近邻法实现分类。理论与实验结果表明,由于避免了正交矩方法存在的重采样与重量化误差,该算法的分类精度高于基于正交矩的分类方法,而且对白噪声的鲁棒性也显著高于基于正交矩的识别与分类方法。  相似文献   

13.
The property of rotation, scaling and translation invariant has a great important in 3D image classification and recognition. Tchebichef moments as a classical orthogonal moment have been widely used in image analysis and recognition. Since Tchebichef moments are represented in Cartesian coordinate, the rotation invariance can’t easy to realize. In this paper, we propose a new set of 3D rotation scaling and translation invariance of radial Tchebichef moments. We also present a theoretical mathematics to derive them. Hence, this paper we present a new 3D radial Tchebichef moments using a spherical representation of volumetric image by a one-dimensional orthogonal discrete Tchebichef polynomials and a spherical function. They have better image reconstruction performance, lower information redundancy and higher noise robustness than the existing radial orthogonal moments. At last, a mathematical framework for obtaining the rotation, scaling and translation invariants of these two types of Tchebichef moments is provided. Theoretical and experimental results show the superiority of the proposed methods in terms of image reconstruction capability and invariant recognition accuracy under both noisy and noise-free conditions. The result of experiments prove that the Tchebichef moments have done better than the Krawtchouk moments with and without noise. Simultaneously, the reconstructed 3D image converges quickly to the original image using 3D radial Tchebichef moments and the test images are clearly recognized from a set of images that are available in a PSB database.  相似文献   

14.
Conventional regular moment functions have been proposed as pattern sensitive features in image classification and recognition applications. But conventional regular moments are only invariant to translation, rotation and equal scaling. It is shown that the conventional regular moment invariants remain no longer invariant when the image is scaled unequally in the x- and y-axis directions. We address this problem by presenting a technique to make the regular moment functions invariant to unequal scaling. However, the technique produces a set of features that are only invariant to translation, unequal/equal scaling and reflection. They are not invariant to rotation. To make them invariant to rotation, moments are calculated with respect to the principal axis of the image. To perform this, the exact angle of rotation must be known. But the method of using the second-order moments to determine this angle will also be inclusive of an undesired tilt angle. Therefore, in order to correctly determine the amount of rotation, the tilt angle which differs for different scaling factors in the x- and y-axis directions for the particular image must be obtained. In order to solve this problem, a neural network using the back-propagation learning algorithm is trained to estimate the tilt angle of the image and from this the amount of rotation for the image can be determined. Next, the new moments are derived and a Fuzzy ARTMAP network is used to classify these images into their respective classes. Sets of experiments involving images rotated and scaled unequally in the x- and y-axis directions are carried out to demonstrate the validity of the proposed technique.  相似文献   

15.
文章提出了一种使用修正后的Hu新增不变矩零水印算法。该算法融合Hu不变矩及其新增的几个不变矩的特征矢量,提出了一种基于Hu修正不变矩的零水印算法。该方法保持了原有Hu矩的平移、尺度、旋转不变性,比原有的Hu不变矩包含了更多的细节信息用于更全面地描述图像。通过对该算法进行了一系列加噪、滤波以及JPEG压缩等仿真实验,结果表明该算法对常规的信号处理和几何攻击在鲁棒性上比原始7个Hu不变矩都有一定的提高。  相似文献   

16.
New Invariant Moments for Non-Uniformly Scaled Images   总被引:1,自引:0,他引:1  
The usual regular moment functions are only invariant to image translation, rotation and uniform scaling. These moment invariants are not invariant when an image is scaled non-uniformly in the x- and y-axes directions. This paper addresses this problem by presenting a new technique to obtain moments that are invariant to non-uniform scaling. However, this technique produces a set of features that are only invariant to translation and uniform/non-uniform scaling. To obtain invariance to rotation, moments are calculated with respect to the x-y-axis of the image. To perform this, a neural network is used to estimate the angle of rotation from the x-y-axis and the image is unrotated to the x-y-axis. Consequently, we are able to obtain features that are invariant to translation, rotation and uniform/non-uniform scaling. The mathematical background behind the development and invariance of the new moments are presented. The results of experimental studies using English alphabets and Arabic numerals scaled uniformly/non-uniformly, rotated and translated are discussed to further verify the validity of the new moments.  相似文献   

17.
18.
The ideal of Bessel-Fourier moments (BFMs) for image analysis and only rotation invariant image cognition has been proposed recently. In this paper, we extend the previous work and propose a new method for rotation, scaling and translation (RST) invariant texture recognition using Bessel-Fourier moments. Compared with the others moments based methods, the radial polynomials of Bessel-Fourier moments have more zeros and these zeros are more evenly distributed. It makes Bessel-Fourier moments more suitable for invariant texture recognition as a generalization of orthogonal complex moments. In the experiment part, we got three testing sets of 16, 24 and 54 texture images by way of translating, rotating and scaling them separately. The correct classification percentages (CCPs) are compared with that of orthogonal Fourier-Mellin moments and Zernike moments based methods in both noise-free and noisy condition. Experimental results validate the conclusion of theoretical derivation: BFM performs better in recognition capability and noise robustness in terms of RST texture recognition under both noise-free and noisy condition when compared with orthogonal Fourier-Mellin moments and Zernike moments based methods.  相似文献   

19.
The rotation, scaling and translation invariant property of image moments has a high significance in image recognition. Legendre moments as a classical orthogonal moment have been widely used in image analysis and recognition. Since Legendre moments are defined in Cartesian coordinate, the rotation invariance is difficult to achieve. In this paper, we first derive two types of transformed Legendre polynomial: substituted and weighted radial shifted Legendre polynomials. Based on these two types of polynomials, two radial orthogonal moments, named substituted radial shifted Legendre moments and weighted radial shifted Legendre moments (SRSLMs and WRSLMs) are proposed. The proposed moments are orthogonal in polar coordinate domain and can be thought as generalized and orthogonalized complex moments. They have better image reconstruction performance, lower information redundancy and higher noise robustness than the existing radial orthogonal moments. At last, a mathematical framework for obtaining the rotation, scaling and translation invariants of these two types of radial shifted Legendre moments is provided. Theoretical and experimental results show the superiority of the proposed methods in terms of image reconstruction capability and invariant recognition accuracy under both noisy and noise-free conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号