首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
针对数字化制鞋生产的需要,提出一种自动生成鞋底喷胶轨迹的方法.该方法首先从三维鞋楦CAD模型中提取鞋底轮廓线,计算其在鞋底曲面的偏置曲线作为轨迹曲线,采用等参数方法对轨迹曲线进行采样得到机器人喷胶轨迹上的目标点并计算出其方向.最后通过机器人喷胶试验验证了该方法的可行性和有效性.  相似文献   

2.
针对传统控制方法难以解决自由漂浮空间机器人(free-floating space robot, FFSR)轨迹跟踪过程中的各类约束的问题,采用模型预测控制对自由漂浮空间机器人的轨迹跟踪问题进行了研究.在自由漂浮空间机器人拉格朗日动力学模型的基础上,建立了系统伪线性化的扩展状态空间模型;在给定系统的性能指标和各类约束的情况下,基于拉盖尔模型设计相应的离散模型预测控制器,并证明控制器的稳定性,控制器中引入任务空间滑模变量实现了对末端期望位置和期望速度的同时跟踪;以平面二杆自由漂浮空间机器人为例,对无约束末端轨迹跟踪和有约束末端轨迹跟踪两种情况进行对比仿真验证.仿真结果表明,该模型预测控制器不仅可以实现对末端期望轨迹的有效跟踪,还能满足各类约束.  相似文献   

3.
为了提高柔性关节机器人的轨迹跟踪精度和抖动抑制能力,设计了一种基于无源性理论的柔性关节控制器.通过Simulink仿真验证和简化了该控制器,使其更加适合于多自由度机器人的控制.用于实验的7自由度机器人采用DSP+FPGA结构,数字信号处理器(DSP)和现场可编程逻辑门阵列(FPGA)分别实现非线性部分和线性部分计算,避免了由于自由度的增加引起的关节控制器性能变化.实验结果表明,与传统的PD控制相比,基于无源性理论的柔性关节控制器具有力矩波动小以及抖动抑制快、稳态精度高等优点.  相似文献   

4.
《机器人》2016,(5)
针对空间狭小拥挤、地面不平的特殊装配环境,设计了一种5自由度全方位移动装配机器人.该机器人主要由基于4组并联布置的MY(mutual Yo Yo)轮的全方位移动平台和具有2自由度的并联举升机构组成.首先,针对该机器人的全方位运动和并联举升机构的2自由度结构特点,建立了机器人的整体运动学模型,并基于该模型对机器人进行了圆形曲线轨迹仿真.然后,设计双曲线滤波PD(proportional derivative)控制器对机器人的轨迹进行跟踪并分析其轨迹跟踪误差.该控制器能控制平均误差在5 mm左右,且误差随跟踪时间减小而减小.最后,通过实验结果验证了该运动学模型和仿真结果的正确性,且该控制器能迅速并精确地实现其轨迹跟踪,从而进一步验证了该全方位移动装配机器人的优越性.  相似文献   

5.
本文针对全方位移动机器人轨迹追踪中的摩擦补偿问题,提出了一种改进的非线性自抗扰控制器.首先建立了含有经典静态摩擦模型的全方位移动机器人动力学模型.其次,基于该模型设计非线性控制器和线性扩张状态观测器并给出了系统的稳定性分析.通过将模型已知项加入线性扩张状态观测器中得到摩擦力的估计值,并将估计值用于非线性控制器中摩擦补偿部分.为减小摩擦力对机器人低速运动轨迹追踪控制的影响,非线性控制器采用变增益控制器进行轨迹追踪控制.最后通过仿真结果验证本文提出控制器的有效性.  相似文献   

6.
在机器人路径规划和跟踪的优化过程的研究中,路径规划、轨迹跟踪是移动机器人研究的重要内容.过去通常采用理想数学模型进行仿真,而机器人物理属性和路面模型等都不加以考虑,使得算法难以优化路径规划、跟踪的稳定性和精度.运用现代虚拟设计仿真技术,借助动力学软件RecurDyn建立移动机器人实体模型和路面模型,利用Matlab/Simulink设计控制器,构建一个虚拟仿真平台.通过推导,设计出输入输出反馈线性化的运动控制器,并在仿真平台上进行机器人路径规划和轨迹跟踪仿真,控制器效果得以优化验证.虚拟仿真不仅能缩短研发周期,降低研发成本,并为机器人研究设计提供有效依据.  相似文献   

7.
本文提出一种自适应模糊控制器并将之用于机器人轨迹跟踪控制 ,该控制器采用控制器输出误差方法 (COEM) ,根据控制器的输出误差而不是对象的输出误差来在线地调整模糊控制器的参数 ,无须对对象进行辩识 .仿真结果表明该控制器用于机器人轨迹跟踪控制具有很好的性能 ,是一种有效的控制器  相似文献   

8.
以四轮移动机器人为研究对象,建立了机器人完整的数学模型,包括运动学模型、动力学模型以及驱动电机模型。在机器人数学模型的基础上,采用反步法的思想设计具有全局收敛特性的鲁棒轨迹跟踪控制器,设计中考虑了驱动电机模型使控制器更符合实际控制要求,并将其分解为运动学控制器、动力学控制器以及电机控制器三部分,降低了控制器设计的难度。构造了系统的李雅普诺夫函数,证明了该类型移动机器人在所得控制器作用下,能实现对给定轨迹的全局渐近追踪。仿真实验结果表明基于反步法的控制器是有效的。  相似文献   

9.
履带式移动机器人轨迹跟踪研究   总被引:2,自引:0,他引:2  
详细分析了履带式移动机器人的受力特点,提出了一种适宜进行控制器设计的履带移动机器人模型.根据履带式移动机器人动力学模型和运动学模型,设计了机器人的轨迹跟踪控制器.利用Lyapunov稳定判据证明控制器的全局稳定性.在控制器的设计中考虑了履带一地面作用,引入参数对其描述.考虑到机器人动力学约束,引入机器人速度、加速度控制策略以保证机器人运动平滑.仿真实验验证了该方法的有效性和全局收敛.  相似文献   

10.
为了研究具有模型不确定性的机器人操作手的轨迹跟踪控制,采用一种新的递归神经网络——回声状态网络(ESN)设计了动态控制器.采用PID控制器补偿ESN网络的逆建模误差,并在网络训练过程中加入白噪声项,以保证动态系统的稳定性.最后针对两关节机械手的轨迹跟踪控制问题进行了数值仿真,仿真结果表明了该方法的有效性.  相似文献   

11.
关节型机器人运动学仿真及控制系统设计   总被引:1,自引:0,他引:1  
关节型机器人各运动关节动态特性和控制系统的稳定性直接影响机器人以及轨迹规划的可达性。以IRB140关节型机器人为研究对象,依据标准D-H参数法和空间位姿变换理论推导出机器人正向运动学数学模型,并采用机器人逆运动学和改进后的五次多项式插值算法实现了机器人在关节空间下进行轨迹规划时各运动关节速度和加速度过渡平滑的目的。最后,搭建机器人控制系统实验平台,实验结果表明,所设计的关节型机器人控制系统能够准确、稳定的控制各关节运动,精准地完成不同运动路径下的夹取搬运任务,满足实际生产工作要求。  相似文献   

12.
结合一类非完整移动机器人的运动学模型和链式转换,在质心与几何中心重合的情况下,研究含有未知参量的非完整移动机器人的跟踪控制问题.首先,利用针孔摄像机模型提出一种基于视觉伺服的运动学跟踪误差模型;然后在此模型下,将动态反馈、Back-stepping技巧与自适应控制相结合,设计一个区别于以往处理方法、含有两个动态反馈的自适应跟踪控制器,从而实现动力学系统的全局渐近轨迹跟踪,并通过李亚普诺夫方法严格证明闭环系统的稳定性和估计参数的有界性;最后,利用Matlab仿真验证所提出的控制器的有效性.  相似文献   

13.
An adoptive learning strategy using an artificial neural network ANN has been proposed here to control the motion of a 6 D.O.F manipulator robot and to overcome the inverse kinematics problem, which are mainly singularities and uncertainties in arm configurations. In this approach a network have been trained to learn a desired set of joint angles positions from a given set of end effector positions, experimental results has shown an excellent mapping over the working area of the robot, to validate the ability of the designed network to make prediction and well generalization for any set of data, a new training using different data set has been performed using the same network, experimental results has shown a good generalization for the new data sets.The proposed control technique does not require any prior knowledge of the kinematics model of the system being controlled, the basic idea of this concept is the use of the ANN to learn the characteristics of the robot system rather than to specify explicit robot system model. Any modification in the physical set-up of the robot such as the addition of a new tool would only require training for a new path without the need for any major system software modification, which is a significant advantage of using neural network technology.  相似文献   

14.
康复机器人能够按照指定轨迹稳定运行是康复过程安全性和有效性的重要保证,因此机器人末端位姿与人体患肢位姿应保持高度重合,同时康复机器人应具备适应不同人体患肢长度的能力。为此提出了机器人与人体患肢运动学模型关联的计算方法。对所设计的平卧式五自由度髋关节康复串联机器人建立了运动学数学模型。将人体下肢简化为四自由度两关节连杆,建立人体的运动学模型,根据人体下肢参数计算患肢末端位姿,并将其作为输入条件代入机器人运动学模型求解,得到机器人的关节变量对关节转动进行控制。以屈髋和内旋动作为例,应用SimMechanics进行仿真,得到的各关节角度与目标设定值一致,且机器人关节角度范围满足人体髋关节活动度的康复要求。分析了下肢长度测量误差对髋关节康复角度及位置的影响。结果表明当大腿长度占比测量偏差为0.5%,位置偏差小于6 mm时,关节角度偏差小于1°。  相似文献   

15.
从控制的角度出发,提出了一种模型无关的无定标视觉伺服控制方法.在该方法中不需要机器人及摄像机模型,图像雅克比矩阵的计算采用最小二乘估计,机器人系统采用变结构的控制理论设计控制器;而后用李亚普诺夫方法对其进行了稳定性分析,结果证明系统能够渐近稳定.仿真实验证明了算法的有效性.  相似文献   

16.
The solution of inverse kinematics problem of redundant manipulators is a fundamental problem in robot control. The inverse kinematics problem in robotics is the determination of joint angles for a desired cartesian position of the end effector. For the solution of this problem, many traditional solutions such as geometric, iterative and algebraic are inadequate if the joint structure of the manipulator is more complex. Furthermore, many neural network approaches have been done to this problem. But the neural network-based solutions are not much reliable due to the error at the end of learning. Therefore, a reliability-based neural network inverse kinematics solution approach has been presented, and applied to a six-degrees of freedom (dof) robot manipulator in this paper. The structure of the proposed method is based on using three networks designed parallel to minimize the error of the whole system. Elman network, which has a profound impact on the learning capability and performance of the network, is chosen and designed according to the proposed solution method. At the end of parallel implementation, the results of each network are evaluated using direct kinematics equations to obtain the network with best result.  相似文献   

17.
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP algorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.  相似文献   

18.
In this paper we propose a neural network adaptive controller to achieve end-effector tracking of redundant robot manipulators. The controller is designed in Cartesian space to overcome the problem of motion planning which is closely related to the inverse kinematics problem. The unknown model of the system is approximated by a decomposed structure neural network. Each neural network approximates a separate element of the dynamical model. These approximations are used to derive an adaptive stable control law. The parameter adaptation algorithm is derived from the stability study of the closed loop system using Lyapunov approach with intrinsic properties of robot manipulators. Two control strategies are considered. First, the aim of the controller is to achieve good tracking of the end-effector regardless the robot configurations. Second, the controller is improved using augmented space strategy to ensure minimum displacements of the joint positions of the robot. Simulation examples are also presented to verify the effectiveness of the proposed approach.  相似文献   

19.
The robust trajectory tracking problem for an eye-in-hand system is addressed in this paper. A novel visual feedback control model is proposed. It considers not only the uncertainties and disturbances in the robot model, but also the unknown camera parameters. By using sliding mode control, filter method and adaptive technique, the controller is designed such that the robot can track the desired trajectory well by using information provided by camera. Finally, stability and robustness are rigorously proved by using Lyapunov method. Computer simulations are presented to show the effectiveness of the proposed visual feedback controller.  相似文献   

20.
Singularities and uncertainties in arm configurations are the main problems in kinematics robot control resulting from applying robot model, a solution based on using Artificial Neural Network (ANN) is proposed here. The main idea of this approach is the use of an ANN to learn the robot system characteristics rather than having to specify an explicit robot system model.Despite the fact that this is very difficult in practice, training data were recorded experimentally from sensors fixed on each joint for a six Degrees of Freedom (DOF) industrial robot. The network was designed to have one hidden layer, where the input were the Cartesian positions along the X, Y and Z coordinates, the orientation according to the RPY representation and the linear velocity of the end-effector while the output were the angular position and velocities for each joint, In a free-of-obstacles workspace, off-line smooth geometric paths in the joint space of the manipulator are obtained.The resulting network was tested for a new set of data that has never been introduced to the network before these data were recorded in the singular configurations, in order to show the generality and efficiency of the proposed approach, and then testing results were verified experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号