首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了提高现有胰腺图像分割方法性能,提出一种超像素和U型全卷积网络(U-NET)结合的胰腺图像分割方法.首先,提出一种胰腺CT图像的超像素分割方法;然后,依据分割结果对图像进行映射降维得到腹部视觉概要图像,再将其与超像素位置信息作为U型全卷积网络的输入;最后,得到分割好的胰腺器官.在NIH胰腺公开数据集上的实验结果表明,文中方法将戴斯相似系数(DSC)提高到87.9%,高于目前已有的胰腺图像分割方法.并且其运算速度高于U-NET.  相似文献   

2.
廖晓磊  赵涓涓 《计算机科学》2017,44(8):296-300, 317
针对肺实质序列图像分割方法的时效性低和分割不完全性等问题,利用先验知识得到肺部CT序列ROI图像,提出超像素序列分割算法对ROI序列图像进行分割,采用改进的自生成神经网络对超像素进行聚类并优化,根据聚类后样本的灰度和位置特征识别肺实质区域。在序列肺实质图像的分割结果中,单张CT图像的平均处理时间为0.61s,同时能达到92.09±1.52%的平均肺部体素重合度。与已有的方法相比,所提算法能在相对较短的时间内获得较高的分割精准度。  相似文献   

3.
本文从理论上分析了无需重新初始化的水平集方法的主动轮廓图像分割模型,此模型有很大的优越性,但对于目标与背景对比度较小这种情况不能得到一个好的分割效果。该模型应用于CT图像中肝脏的分割时,主动轮廓曲线会跨越肝脏边界从而导致错误的分割结果。通过修正边缘检测函数,加强了其在目标边界处的约束效果,使得主动轮廓曲线在目标物体边界处停止演化,这样能够准确的将肝脏分割出来,保证了分割的正确性。实验证明了该方法的可行性。  相似文献   

4.
传统的主动轮廓方法无法突出分割区域的显著性,同时在由显著性检测算法所得到的显著图中目标具有较高的信噪比,因此提出结合显著性的主动轮廓图像分割。通过线性光谱聚类分割得到超像素,以超像素为处理单位利用基于图论的流形排序算法获得较好的显著图;将高斯混合模型引入到主动轮廓的曲线演化过程中,计算曲线内外的平均灰度值,从而通过高斯混合模型和显著性信息得到了新的主动轮廓能量方程,并运用水平集方法指导分割,获得最终的分割结果。实验结果表明,提出的图像分割方法可以对图像进行快速和有效的分割。  相似文献   

5.
从图像中分割出肝脏和肝肿瘤是肝部疾病诊断重要手段之一,现有基于卷积神经网络(Convolutional Neural Network,CNN)方法通过为输入图像中每个像素分配类别标签来实现肝脏和肝肿瘤分割。CNN在对每个像素分类过程中没有使用邻域内其他像素类别信息,容易出现小目标漏检和目标边界分割模糊问题。针对这些问题,提出了条件能量对抗网络用于肝脏和肝肿瘤分割。该方法基于能量生成对抗网络(Energy-Based Generative Adversarial Network,EBGAN)和条件生成对抗网络(Conditional Generative Adversarial Network,CGAN),使用一个基于CNN的分割网络作为生成器与一个自编码器作为判别器,通过将判别器作为一种损失函数来度量并提升分割结果与真实标注之间的相似度。在对抗训练过程中,判别器将生成器输出的分割结果作为输入并将原始图像作为条件约束,通过学习像素类别之间的高阶一致性提高分割精度,使用能量函数作为判别器避免了对抗网络训练中容易出现的梯度消失或梯度爆炸,更易于训练。在MICCAI 2017肝肿瘤分割(LiTS)挑战赛的数据集和3DIRCADb数据集上对提出的方法进行验证,实验结果表明,该方法不仅实现了肝脏与肝肿瘤的自动分割,还利用像素类别之间的高阶一致性提升了肿瘤和肝脏边界的分割精度,减少了小体积肿瘤的漏检。  相似文献   

6.
针对水平集图像分割模型的分割结果不够准确且对初始轮廓位置和噪声敏感问题,提出了超像素/像素协同约束和稀疏分解的活动轮廓模型。首先引入超像素提取图像块信息构造符号压力函数防止轮廓在演化过程中陷入局部最优;其次,构建了基于超像素/像素协同约束的能量泛函以弥补超像素无法保留局部细节的缺陷;同时,为了解决基于非全局信息的活动轮廓模型演化速度慢的问题,提出模型利用超像素块加速轮廓演化;最后引入了稀疏分解对模型进行优化以减弱局部噪声对分割精度的影响。与多种水平集分割模型的实验结果对比,证明了提出方法的有效性,尤其与原始的二值选择和高斯滤波正则化水平集模型相比,提出方法对噪声和初始轮廓位置不敏感,平均Jaccard相似度系数提升了34%。  相似文献   

7.
王荣淼  张峰峰  詹蔚  陈军  吴昊 《计算机应用》2019,39(11):3366-3369
传统模糊C均值(FCM)聚类算法应用于肝脏CT图像分割时仅考虑像素本身特征,无法解决灰度不均匀造成的影响以及肝脏边界模糊造成的边界泄露的问题。为解决上述问题,提出一种结合空间约束的模糊C均值(SFCM)聚类分割算法。首先,使用二维高斯分布函数构建卷积核,利用该卷积核对源图像进行空间信息提取得到特征矩阵;然后,引入空间约束惩罚项,更新并优化目标函数得到新的迭代方程;最后,通过多次迭代,完成对肝脏CT图像的分割。实验结果表明,SFCM算法分割具有灰度不均匀和边界粘连的肝脏CT图像时得到的肝脏轮廓形状更加规则,准确率达到92.8%,比FCM和直觉模糊C均值(IFCM)算法的分割准确率分别提升了2.3和4.3个百分点,过分割率分别降低了4.9和5.3个百分点。  相似文献   

8.
针对传统算法对边界模糊的图像分割效果不理想,分割结果多毛刺的问题,提出了一种由粗到细的图像边缘提取方法,主要由像素覆盖分割方法和Chan-Vese模型组成。将改进的覆盖分割方法和活动轮廓模型相结合,首先使用原始覆盖分割算法对图像进行分割,利用多方向模糊形态学边缘检测算法提取不同物体之间的边界;然后采用改进的像素覆盖分割方法给边界像素重新分配覆盖值;最后,运用活动轮廓算法进行细化的图像边界提取;分别进行了分割结果的定性比较,抗噪性测试以及提取的边缘对比实验。实验结果表明,该方法对具有模糊边界的图像,提取边缘结果优于其他可比文献中提出的方法。  相似文献   

9.
在计算机断层扫描(CT)图像中肝脏与相邻器官灰度值近似,且不同患者的肝脏轮廓存在差异性,导致肝脏CT图像的精确分割成为医学图像处理中的难题之一。为实现肝脏CT图像的自动分割,构建一种层间上下文级联式的全卷积神经网络模型HC-CFCN。利用第1级网络实现肝脏轮廓的粗略分割,并将其分割结果与原始CT图像、肝脏能量图共同作为第2级网络的输入,优化分割结果。在LiTS数据集上的实验结果表明,与U-Net、FCN+3DCRF和V-Net模型相比,HC-CFCN模型的分割精度较高。  相似文献   

10.
肝脏肿瘤的评估是结直肠癌肝转移临床诊疗的重要步骤。为了完成腹部CT影像中的肝脏肿瘤自动分割和检测任务,提出一种改进的级联深度学习网络。级联网络采用U-Net和Mask R-CNN模型分别完成分割和检测任务。训练U-Net模型作为级联网络的第一层来分割肝脏器官作为感兴趣区域(ROI);针对ROI区域进行形态学活动轮廓提取;使用U-Net模型和Mask R-CNN模型作为级联网络的第二层分别完成精准分割和检测ROI内肝脏肿瘤的任务。实验结果表明,对于级联U-Net模型的肝脏转移瘤分割平均Dice系数为74%;Mask R-CNN的肿瘤实例分割Dice系数为67%(置信度为95%),均值平均精度(mAP)为88%。  相似文献   

11.
计算机断层扫描(computed tomography,CT)技术能为新冠肺炎(corona virus disease 2019,COVID-19)和肺癌等肺部疾病的诊断与治疗提供更全面的信息,但是由于肺部疾病的类型多样且复杂,使得对肺CT图像进行高质量的肺病变区域分割成为计算机辅助诊断的重难点问题。为了对肺CT图像的肺及肺病变区域分割方法的现状进行全面研究,本文综述了近年国内外发表的相关文献:对基于区域和活动轮廓的肺CT图像传统分割方法的优缺点进行比较与总结,传统的肺CT图像分割方法因其实现原理简单且分割速度快等优点,早期使用较多,但其存在分割精度不高的缺点,目前仍有不少基于传统方法的改进策略;重点分析了基于卷积神经网络(convolutional neural network,CNN)、全卷积网络(fully convolutional network,FCN)、U-Net和生成对抗网络(generative adversarial network,GAN)的肺CT图像分割网络结构改进模型的研究进展,基于深度学习的分割方法具有分割精度高、迁移学习能力强和鲁棒性高等优点,特别是在辅助诊断COVID-19病例时,基于深度学习方法的性能明显优于基于传统方法的性能;介绍肺及肺病变区域分割的常用数据集和评价指标,在解决如COVID-19数据样本量少等问题时,使用GAN以合成高质量的对抗性图像用以扩充数据集,从而增加训练样本的数量和多样性;讨论了肺CT图像的肺及肺病变区域的高精度分割策略的研究趋势、现有挑战和未来的研究方向。  相似文献   

12.
医学图像分割与配准是图像引导放疗(Image guided radiation therapy, IGRT)系统中的关键技术. 为提高基于CBCT (Cone beam CT)的IGRT系统实施胸腹部肿瘤放疗的实时性与自适应性, 特别是实现重要危及器官肝脏区域照射剂量的合理控制, 本文提出一种基于感兴趣窄带区域的同步分割与配准方法, 目标是实现放疗计划系统中计划CT和CBCT图像目标区域的分割与配准. 通过构建感兴趣窄带模型, 并且与活动轮廓模型相结合实现初始分割, 然后与基于光流场(Optical flow field, OFF)的形变配准方法进行循环迭代, 从而构造ASOR分割与配准同步模型(Active contour segmentation and optical flow registration synchronously, ASOR). 在方法实施时, 首先利用非线性扩散模型和窄带活动轮廓模型在CT图像中提取肝脏空间初始位置信息, 为同步模型提供合理的肝脏初始轮廓. 然后将该轮廓及相应窄带区域经仿射变换映射到CBCT图像, 进而结合构造的ASOR同步模型, 用光流场确定活动轮廓水平集的运动情况, 使分割与配准在同一个演化过程中完成迭代. 实验结果和临床应用表明, 本文提出的方法应用于基于CBCT的IGRT系统时, 可实现肝脏组织的自动分割与放疗剂量分布的快速计算. 同时, 我们将同步过程中获得的形变域用于实现肝脏与肿瘤靶区等剂量线从计划CT到CBCT的自适应转移, 进行自适应放疗效果的临床测评.  相似文献   

13.
赖均  解梅 《计算机应用研究》2013,30(8):2545-2548
为了研究采用基于先验形状约束的活动轮廓模型方法来正确分割胸腔CT影像中高密度病变影响边缘的肺野区域, 对已分割获得的胸腔CT影像中的二维肺野区域的形状根据其相似性进行粗略分类, 并对这些先验形状进行分类学习, 通过学习获得的PCA形状向量与活动轮廓相结合的迭代方法拟合肺野区域的正确边界, 最后通过基于边界的区域分割方法对胸腔CT影像进行分割, 得到正确的肺野区域。通过所得分割结果的对比表明, 采用该模型来拟合肺野区域边界来完成肺野分割是可行的, 同时从分割结果的量化评价指标(准确性和敏感性、特异性)可看出本方法分割能够得到正确的肺野区域。  相似文献   

14.
结合MRF能量和模糊速度的乳腺癌图像分割方法   总被引:1,自引:0,他引:1  
乳腺癌灶的精确分割是乳腺癌计算机辅助诊断的重要前提. 在动态对比增强核磁共振成像(Dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)的图像中, 乳腺癌灶具有对比度低、边界模糊及亮度不均匀等特点, 传统的活动轮廓模型方法很难取得准确的分割结果. 本文提出一种结合马尔科夫随机场(Markov random field, MRF)能量和模糊速度函数的活动轮廓模型的半自动分割方法来完成乳腺癌灶的分割, 相对于专业医生的手动分割, 本文方法具有速度快、可重复性高和分割结果相对客观等优点. 首先, 计算乳腺DCE-MRI图像的MRF能量, 以增强目标区域与周围背景的差异. 其次, 在能量图中计算每个像素点的后验概率, 建立基于后验概率驱动的活动轮廓模型区域项. 最后, 结合Gabor纹理特征、DCE-MRI时域特征和灰度特征构建模糊速度函数, 将其引入到活动轮廓模型中作为边缘检测项. 在乳腺癌灶边界处, 该速度函数趋向于零, 活动轮廓曲线停止演变, 完成对乳腺癌灶的分割. 实验结果表明, 所提出的方法有助于乳腺癌灶在DCE-MRI图像中的准确分割.  相似文献   

15.
目的 从医学影像中进行肝脏与肿瘤分割是计算机辅助诊断和治疗的重要前提。常见的胸部和腹部扫描成像效果中,图像对比度偏低,边界模糊,需要医生丰富的临床解剖学知识才能准确地分割,所以精确的自动分割是一个极大的挑战。本文结合深度学习与医学影像组学,提出一种肝脏肿瘤CT(computed tomography)分割方法。方法 首先建立一个级联的2D图像端到端分割模型对肝脏和肿瘤同时进行分割,分割模型采用U-Net深度网络框架,在编码器与解码器内部模块以及编码器与解码器层次之间进行密集连接,这种多样化的特征融合可以获取更准确的全局位置特征和更丰富的局部细节纹理特征;同时融入子像素卷积与注意力机制,有利于分割出更加微小的肿瘤区域;接着生成两个用于后处理的学习模型,一个基于影像组学的分类模型用于假阳性肿瘤的去除;另一个基于3D体素块的分类模型用于分割边缘的细化。结果 实验数据来自某医院影像科300个肝癌病例CT,每个序列中的肝脏与肿瘤都是由10年以上的医学专家进行分割标注。对数据进行5倍交叉验证,敏感度(sensitivity)、命中率(positive predicted value)和戴斯系数(Dice coefficient)在验证结果中的平均值分别达到0.87±0.03、0.91±0.03和0.86±0.05,相比于性能第2的模型分别提高了0.03、0.02和0.04。结论 肝脏肿瘤CT的精确分割可以形成有价值的术前预判、术中监测和术后评价,有助于制定完善的手术治疗方案,提高肝脏肿瘤手术的成功率,且该方法不局限于肝脏肿瘤的分割,同样也适用于其他医学影像组织器官与肿瘤的分割。  相似文献   

16.
三维肝脏分割是当前医学图像处理的热点问题,如何准确快速地从腹部CT序列中分割出肝脏是肝部病变诊断的基础。针对传统活动轮廓模型对轮廓线敏感、运算量大的问题,改进了传统轮廓线设置方法,并把算法扩展到三维。首先,在一幅腹部CT图片中采用改进的分水岭算法,按照灰度和纹理的相似性原则从一个种子块开始生长出整个肝脏,再用其边缘作为相邻CT序列的起始轮廓,用GVF算法从序列图片中分割出肝脏,重复该过程,直至分割出整个腹部序列图像的切片,进行三维重建。  相似文献   

17.
目的 肺区分割是肺癌计算机辅助诊断系统的首要步骤。主动形状模型(active shape model,ASM)能根据训练集获得肺区形状模型,再结合待分割肺区影像自身的局部特征,进行测试影像的分割。由于主成分分析(principal component analysis,PCA)仅能去除服从高斯分布的噪声,不能处理其他类型的噪声,所以当训练集含有非高斯类型的噪声样本时,采用基于PCA的ASM无法训练出正确的形状模型,使得肺区分割不能得到正确的结果。而低秩(low rank,LR)理论的鲁棒主成分分析(robust principal component analysis,RPCA)能去除各种类型的噪声,基于此,本文提出一种将RPCA与ASM相结合的方法。方法 首先对训练样本集标记点矩阵进行低秩分解,去除噪声样本对训练出的形状模型的影响。然后在ASM训练局部梯度模型时,用判断训练样本轮廓上的标记点曲率直方图的相似度来去除噪声样本。结果 在训练集含噪声样本时,将基于RPCA的ASM与传统ASM(即基于PCA的ASM)分别生成的形状模型进行对比,发现基于RPCA的ASM生成的形状模型与训练集无噪声样本时传统ASM生成的形状模型更相符。在训练集含噪声样本的情况下,基于RPCA的ASM方法分割EMPIRE10数据集中的22个肺影像,与金标准的重叠度为94.5%,而基于PCA的ASM方法分割准确率仅为69.5%。结论 实验结果表明,在训练样本集中有噪声样本的情况下,基于RPCA的ASM分割能得到比基于PCA的ASM更好的分割效果。  相似文献   

18.
目的 精确的肝脏分割是计算机辅助肝脏疾病诊断和手术规划的必要步骤,但由于肝脏解剖学的复杂性、邻近器官的低对比度和病态等原因,使得肝脏分割在医学图像处理领域仍然是具有挑战性的任务。针对腹部图像器官边界模糊及传统U-Net模型实现端到端的分割时精确度不高等问题,设计了一种基于改进的U-Net (IU-Net)和Morphsnakes算法的增强CT图像肝脏分割方法。方法 首先根据CT图像头文件信息对原始数据进行预处理并构建数据集,然后使用构建好的数据集训练IU-Net,训练过程中使用自定义的Dice层评测图像分割结果的准确率,最后通过OpenCV和Morphsnakes对初始分割结果进行精细分割,最终实现增强CT图像中肝脏的精确分割。结果 实验数据包括200组增强CT,160组用于训练,40组用于测试。本文算法分割准确率达到了94.8%,与U-Net、FCN-8s模型相比,具有更好的分割效果。结论 本文算法可以准确分割增强CT图像中各种形状的肝脏,能够为临床诊断提供可靠依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号