首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 150 毫秒
1.
为防止汽车产生测滑,针对汽车直接横摆力矩控制,提出了横摆角速度与质心侧偏角联合控制的模糊控制方法.横摆力矩控制采用分层控制方法,设计了模糊控制器和规则制动力分配方法.模糊控制器根据期望值和车辆状态决策出所需的附加横摆力矩,并通过规则制动力分配方法进行主动差动制动实现.采用Matlab/Simulink与CarSim联合仿真对控制方法进行了仿真验证.结果表明:横摆角速度与质心侧偏角联合控制的横摆力矩模糊控制方法使汽车能够较好地跟踪期望,有效提高汽车极限工况下的行驶稳定性.  相似文献   

2.
提出一种基于横摆力矩和主动前轮转向相结合的车辆横向稳定性控制方法,以横摆角速度和侧偏角为控制目标,利用前馈补偿和模糊控制产生横摆力矩和附加的前轮转角,通过控制制动力的分配以及对转向角的修正,使车辆转向行驶时的横摆角速度和侧偏角很好地跟踪参考模型.对转向轮阶跃输入和正弦输入两种工况分别进行了仿真研究,采用横摆力矩和主动前轮转向相结合控制方法,车辆转向时的瞬态及稳态响应优于单独的横摆力矩控制,表明该方法能有效地控制车辆横摆角速度和侧偏角,提高车辆转向时的横向稳定性,同时能有效地减轻驾驶员操纵负担.  相似文献   

3.
为了提高轮毂驱动电动车辆的操纵稳定性,理论分析了车辆横摆角速度和质心侧偏角对于车辆稳定性的影响.设计了基于滑模变结构控制理论和直接横摆力矩控制的双层控制器.在Carsim中搭建了四轮轮毂电机驱动车辆仿真实验平台,并进行了Carsim/Simulink联合仿真,在标准换道工况下,分别验证了基于质心侧偏角的滑模变结构控制和基于横摆角速度的滑模变结构控制策略的效果,验证了双层车辆稳定性控制策略的有效性和稳定性.  相似文献   

4.
在汽车操纵稳定性优化控制的研究中,为对车辆施加合适的制动力以实现车辆极限工况下的稳定,研究了汽车操纵稳定性的模糊PID控制方法.基本方法是直接将横摆角速度作为控制变量,在模糊控制的基础上加入传统的PID控制,在大偏差范围内采用模糊控制进行快速响应调整,在小偏差范围内采用常规PID控制.采用7自由度整车模型进行J-转向和换道操纵仿真,仿真结果显示模糊PID控制可以有效地提高汽车行驶时的稳定性.证明设计的控制策略能较好的满足系统的控制要求,并为汽车操纵稳定性控制研究提供有益的参考.  相似文献   

5.
针对分布式驱动电动车的行驶稳定性控制问题,利用CarSim和MATLAB/Simulnk软件建立模型并搭建联合仿真平台。设计稳定性控制算法,包括横摆力矩控制、转矩协调控制和驱动防滑控制。以车辆横摆角速度和质心侧偏角作为控制变量,运用滑模变结构控制方法,设计横摆力矩控制器。通过转矩分配算法,对单个车轮施加驱动或制动力,产生稳定横摆力矩,并建立模糊控制器对车轮滑转率进行控制。在仿真平台完成了双移线工况的仿真,结果表明,该算法能提高车辆行驶稳定性。  相似文献   

6.
卢丽霞  李刚  曹天琳 《计算机仿真》2023,(3):135-140+201
针对分布式驱动电动车稳定性控制问题,提出了一种差动驱动与差动制动协调控制策略。基于模糊控制理论设计的模糊控制器计算附加横摆力矩,并通过二自由度车辆模型计算横摆角速度和质心侧偏角的期望值。基于最优控制中的二次规划理论计算出每个车轮的力矩。选取蛇形和双移线的典型实验工况,通过MATLAB/Simulink与CarSim联合仿真对控制算法进行验证。结果表明:差动驱动与差动制动协调控制策略能够有效提高汽车操纵稳定性和行驶安全性。可见,所提出的控制策略有效可行。  相似文献   

7.
从车辆操纵稳定性多状态量的响应等方面着手,提出了4WS车辆横摆率跟踪多状态最优控制方案,建立了考虑四轮转向车辆动态响应的闭环操纵稳定性仿真模型,比较了采用横摆角速度多状态最优控制方法与前后轮转向比是车速函数的四轮转向控制方法的操纵稳定特性.结果表明对于使用横摆角速度多状态最优控制的4WS车辆,其转向过程中的侧向加速度和横摆角速度等操纵稳定性瞬态特性均明显优于其它4WS控制方法的车辆,同时保持操纵稳定性的稳态特性不变.  相似文献   

8.
为实现四轮前后轮转向车辆的稳定车道线保持控制,提出集成直接横摆力矩和车道线保持的串级控制策略.主控制器实现车道线保持前轮转角控制.副控制器实现车辆稳定性控制.主控制器基于MPC(model predictive control)算法控制车辆前轮转角,通过调整前轮转角使得横向位置偏差和航向角偏差最小.主控制器的车辆前轮转角作为副控制器的输入,计算期望滑移角和期望横摆率.车辆后轮转角和横摆力矩作为副控制器控制输入,基于LQ(linear quadratic)算法计算补偿车辆后轮转角和横摆力矩,实际车辆滑移角和实际横摆率跟踪期望滑移角和期望横摆率.车辆的前轮转角、后轮转角和横摆力矩作为控制输入,在副控制器实现车辆稳定性控制基础上,主控制器实现准确地车道线保持控制,保证智能车辆在车道内自主安全行驶.仿真结果表明,该串级控制策略的有效性,提高了智能车辆车道线跟踪的准确性,也提高车辆的稳定性和操纵性.  相似文献   

9.
研究含有时变参数的车辆动力学模型的输出跟踪控制问题.控制目标是使车辆的横摆角速度和质心侧偏角分别跟踪理想的设定值,通过反推方法设计输出反馈自适应控制器.控制器的输出为主动横摆力矩,通过控制主动横摆力矩来控制车辆的输出响应跟踪理想的输出信号,从而提高车辆的安全性.仿真结果表明,该控制器能更好地适应车速和路况的变化,鲁棒性强.  相似文献   

10.
该文首先介绍了目前车辆稳定控制程序的研究现状并提出了通过联合仿真进行控制策略开发的新思路,然后详细阐述联合仿真技术的实现原理及方法。接着设计了基于线性二次最优控制理论的直接横摆力矩状态反馈控制策略并引入横摆角速度和质心侧偏角的限值控制以提高车辆在危险工况下的稳定性及可控性。最后通过ADAMS/Car和Matlab/simulink的联合仿真验证了该控制策略的正确性,并为今后复杂机电系统控制策略的开发提供了一条新的途径。  相似文献   

11.

This paper presents a control strategy to enhance the lateral dynamics stability and handling performance of the four-wheel independently actuated (FWIA) electric vehicles (EVs). The vehicle longitudinal velocity uncertainty and controller saturation are considered, a double layers control scheme is adopted. In the upper layer, the homogeneous polynomial parameter-dependent approach is introduced to track the uncertainty problem, and a multi-objective controller is designed to obtain the desired external yaw moment. In the lower layer, an optimal force distribution method with considering the distribution error and tire workload is employed to allocate the desired external yaw moment into forces of the four in-wheel motors. Simulation results verify the effectiveness of the proposed control strategy.

  相似文献   

12.
When four wheel side driven EV travals in steering or changes lanes in high speed, the vehicle is easy to side-slip or flick due to the difference of wheel hub motor and a direct effect of vehicle nonlinear factors on vehicle yaw motion, which would affect vehicle handling and stability seriously. To solve this problem, a joint control strategy, combined with the linear programming algorithm and improved sliding mode algorithm, which combines the exponential reaching law and saturation function was proposed. Firstly, the vehicle dynamics model and the reference model according with the structure and driving characteristics of four wheel side driven EV were set up. Then, introduced the basic method of the improved sliding mode variable structure control and complete the sliding mode variable structure controller design basic on vehicle sideslip angle and yaw velocity.The controller accomplish optimal allocation of vehicle braking force through a linear programming algorithm, according to yaw moment produced by the vehicle motion state. Single lane driving simulation results show that the proposed control strategy can not only control vehicle sideslip angle and yaw velocity well, but also accomplish good controlling of the vehicle yaw moment, so as to significantly improve the handling and stability of vehicle.  相似文献   

13.
Controller design for vehicle stability enhancement   总被引:6,自引:0,他引:6  
A Vehicle Dynamics Control (VDC) system is developed for tracking desired vehicle behavior. The cascade structure of control system consists of yaw moment major controller and wheel slip minor controller. The Linear Quadratic Regulator (LQR) theory is exploited for yaw moment controller and the sliding mode theory is applied for wheel slip controller design. The use of yaw moment control was investigated by regulating the wheel slip ratio for improving handling and stability of vehicle. The performance of the control system is evaluated under various emergency maneuvers and road conditions through pure computer simulations and Hardware In-the-Loop Simulation (HILS) system. The results indicate the proposed system can significantly improve vehicle stability for active safety.  相似文献   

14.
This paper proposes a novel control scheme with a three-layer hierarchical structure to improve the cornering stability of the dual-motor rear-wheel drive (RWD) vehicles with the electronic differential system (EDS). The proposed hierarchical structure for the control system includes the observing layer, control layer, and actuation layer. In the observing layer, the driver model is designed to obtain the nominal steering angle, and the state observer is designed to obtain the yaw angle which cannot be easily measured. Then, particle swarm optimization (PSO) and second order sliding mode control (SOSMC) are employed in the control layer. The SOSMC part is used to design the control law to eliminate the chattering problem in the sliding mode algorithm, and the PSO part is used to obtain the optimal weights in the sliding mode surface to meet the minimum sideslip angle error and yaw rate error. The actuation layer allocates the corrected yaw moment by distributing the driving force to each independent driving wheel. Finally, the numerical tests are carried out under the double line change (DLC) maneuver. The results show that the proposed control system can effectively improve the cornering stability of the dual-motor RWD vehicles and reduce their motor power consumption.  相似文献   

15.
针对汽车系统的非线性和参数不确定性,设计了一种“前馈+反馈”自适应神经模糊控制器,通过ESP和AFS的协调控制来提高汽车操纵稳定性.ESP反馈控制器采用模糊控制策略,以横摆角速度和质心侧偏角为控制目标;AFS前馈控制器采用径向基神经网络控制,以反馈控制器的输出作为误差进行学习,从而实现自适应控制.仿真结果表明,上述控制策略是可行和有效的,能显著改善汽车在高速或湿滑路面上的操纵稳定性.  相似文献   

16.
This paper describes a hierarchical lane keeping assistance control algorithm for a vehicle. The proposed control strategy consists of a supervisor, an upper-level controller and a lower-level controller. The supervisor determines whether lane departure is intended or not, and whether the proposed algorithm is activated or not. To detect driver′s lane change intention, the steering behavior index has been developed incorporating vehicle speed and road curvature. To validate the detection performance on the lane change intention, full-scale simulator tests on a virtual test track (VTT) are conducted under various driving situations. The upper-level controller is designed to compute the desired yaw rate for the lane departure prevention, and for the guidance with ride comfort. The lower-level controller is designed to compute the desired yaw moment in order to track the desired yaw rate, and to distribute it into each tire′s braking force in order to track the desired yaw moment. The control allocation method is adopted to distribute braking forces under the actuator’s control input limitation. The proposed lane keeping assistance control algorithm is evaluated with human driver model-in-the-loop simulation and experiments on a real vehicle.  相似文献   

17.
无尾飞翼式无人机飞行控制特性研究   总被引:1,自引:0,他引:1  
依据高空长航时无尾飞翼式无人机的主要特点来分析飞机本体静稳定性以及高空巡航状态飞行时的动稳定性和操纵特性。用经典飞行动力学理论详细研究了无人机在16000m高空巡航状态的自然稳定性,并利用Matlab simulink对滚转-俯仰-偏航耦合运动的仿真来分析无尾飞翼式布局在纵、横航向上的耦合特性。基于以上的分析,采用主动控制技术设计纵向和横航向的控制律,阐述了无人机纵向定高爬升和横航向方位角控制时的操纵特性;并进行仿真分析,得到满意的结果,验证了采用主动控制技术可明显改善各项飞行品质要求。  相似文献   

18.
This paper presents a disturbance observer based control strategy for four wheel steering systems in order to improve vehicle handling stability. By combination of feedforward control and feedback control, the front and rear wheel steering angles are controlled simultaneously to follow both the desired sideslip angle and the yaw rate of the reference vehicle model. A nonlinear three degree-of-freedom four wheel steering vehicle model containing lateral, yaw and roll motions is built up, which also takes the dynamic effects of crosswind into consideration. The disturbance observer based control method is provided to cope with ignored nonlinear dynamics and to handle exogenous disturbances. Finally, a simulation experiment is carried out, which shows that the proposed four wheel steering vehicle can guarantee handling stability and present strong robustness against external disturbances.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号