首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, we propose a conceptual framework for integrating dynamic economic optimization and model predictive control (MPC) for optimal operation of nonlinear process systems. First, we introduce the proposed two-layer integrated framework. The upper layer, consisting of an economic MPC (EMPC) system that receives state feedback and time-dependent economic information, computes economically optimal time-varying operating trajectories for the process by optimizing a time-dependent economic cost function over a finite prediction horizon subject to a nonlinear dynamic process model. The lower feedback control layer may utilize conventional MPC schemes or even classical control to compute feedback control actions that force the process state to track the time-varying operating trajectories computed by the upper layer EMPC. Such a framework takes advantage of the EMPC ability to compute optimal process time-varying operating policies using a dynamic process model instead of a steady-state model, and the incorporation of suitable constraints on the EMPC allows calculating operating process state trajectories that can be tracked by the control layer. Second, we prove practical closed-loop stability including an explicit characterization of the closed-loop stability region. Finally, we demonstrate through extensive simulations using a chemical process model that the proposed framework can both (1) achieve stability and (2) lead to improved economic closed-loop performance compared to real-time optimization (RTO) systems using steady-state models.  相似文献   

2.
In the process industries model predictive controllers (MPC) have the task of controlling the plant ensuring stability and constraints satisfaction, while an economic cost is minimized. Usually the economic objective is optimized by an upper level Real Time Optimizer (RTO) that passes the economically optimal setpoints to the MPC level. The drawback of this structure is the possible inconsistence/unreachability of those setpoints, due to the different models employed by the RTO and the MPC, as well as their different time scales. In this paper an MPC that explicitly integrates the RTO structure into the dynamic control layer is presented. To overcome the complexity of this one-layer formulation a gradient-based approximation is proposed, which provides a low-computational-cost suboptimal solution.  相似文献   

3.
基于粒子群优化的有约束模型预测控制器   总被引:2,自引:1,他引:1  
研究了模型预测控制(MPC)中解决带约束的优化问题时所用到的优化算法,针对传统的二次规划(QP)方法的不足,引入了一种带有混沌初始化的粒子群优化算法(CPSO),将其应用到模型预测控制中,用十解决同时带有输入约束和状态约束的控制问题.最后,引入了一个实际的带有约束的线性离散系统的优化控制问题,分别用二次规划和粒子群优化两种算法去解决,通过仿真结果的比较,说明了基于粒子群优化(PSO)的模型预测控制算法的优越性.  相似文献   

4.
The practice of implementing real-time optimization (RTO) using a rigorous steady-state model, in conjunction with model predictive control (MPC), dates back to the late 1980s. Since then, numerous projects have been implemented in refinery and chemical plants, and RTO has received significant attention in the industrial and academic literature. This history affords us the opportunity to assess the impact and success of RTO technology in the process industries. We begin with a discussion of the role RTO serves in the hierarchy of control and optimization decision making in the plant, and outline the key steps of the RTO layer and the coordination with MPC. Where appropriate, we point out the different approaches that have been used in practice and discuss the success factors that directly relate to the success of RTO within an organization. We also discuss alternative approaches that have been used to alleviate some of the challenges associated with implementing RTO and which may be appropriate for those unwilling to commit to the traditional RTO approach. Lastly, we provide suggestions for improvement to motivate further research.  相似文献   

5.
Spray drying is the preferred process to reduce the water content of many chemicals, pharmaceuticals, and foodstuffs. A significant amount of energy is used in spray drying to remove water and produce a free flowing powder product. In this paper, we present and compare the performance of three controllers for operation of a four-stage spray dryer. The three controllers are a proportional-integral (PI) controller that is used in industrial practice for spray dryer operation, a linear model predictive controller with real-time optimization (MPC with RTO, MPC-RTO), and an economically optimizing nonlinear model predictive controller (E-NMPC). The MPC with RTO is based on the same linear state space model in the MPC and the RTO layer. The E-NMPC consists of a single optimization layer that uses a nonlinear system of ordinary differential equations for its predictions. The PI control strategy has a fixed target that is independent of the disturbances, while the MPC-RTO and the E-NMPC adapt the operating point to the disturbances. The goal of spray dryer operation is to optimize the profit of operation in the presence of feed composition and ambient air humidity variations; i.e. to maximize the production rate, while minimizing the energy consumption, keeping the residual moisture content of the powder below a maximum limit, and avoiding that the powder sticks to the chamber walls. We use an industrially recorded disturbance scenario in order to produce realistic simulations and conclusions. The key performance indicators such as the profit of operation, the product flow rate, the specific energy consumption, the energy efficiency, and the residual moisture content of the produced powder are computed and compared for the three controllers. In this simulation study, we find that the economic performance of the MPC with RTO as well as the E-NMPC is considerably improved compared to the PI control strategy used in industrial practice. The MPC with RTO improves the profit of operation by 8.61%, and the E-NMPC improves the profit of operation by 9.66%. The energy efficiency is improved by 6.21% and 5.51%, respectively.  相似文献   

6.
针对无人直升机在阵风干扰环境中的姿态控制精度低的问题.本文将非线性刚体动力学模型在悬停点应用小扰动理论得到了线性化数学模型.考虑系统输入输出和控制量约束,采用模型预测控制将控制器的设计问题转化为每个采样时刻求解一个带不等式和等式约束的凸二次规划问题.通过设计终端状态约束解决了有限时域模型预测控制(model predictive control, MPC)算法的稳定性问题,并通过引入松弛变量使得约束优化问题更容易求解.随机和常值阵风干扰下无人机悬停仿真验证了本文MPC预测控制器具有幅度不超过0.25 m/s的良好干扰抑制能力,性能明显优于线性二次型调节器(linear-quadratic regulator, LQR).  相似文献   

7.
Hydrocracking is a crucial refinery process in which heavy hydrocarbons are converted to more valuable, low-molecular weight products. Hydrocracking plants operate with large throughputs and varying feedstocks. In addition the product specifications change due to varying economic and market conditions. In such a dynamic operating environment, the potential gains of real-time optimization (RTO) and control are quite high. At the same time, real-time optimization of hydrocracking plants is a challenging task. A complex network of reactions, which are difficult to characterize, takes place in the hydrocracker. The reactor effluent affects the operation of the fractionator downstream and the properties of the final products. In this paper, a lumped first-principles reactor model and an empirical fractionation model are used to predict the product distribution and properties on-line. Both models have been built and validated using industrial data. A cascaded model predictive control (MPC) structure is developed in order to operate both the reactor and fractionation column at maximum profit. In this cascade structure, reactor and fractionation units are controlled by local decentralized MPC controllers whose set-points are manipulated by a supervisory MPC controller. The coordinating action of the supervisory MPC controller accomplishes the transition between different optimum operating conditions and helps to reject disturbances without violating any constraints. Simulations illustrate the applicability of the proposed method on the industrial process.  相似文献   

8.
Determining the optimization scope is a major issue whenever implementing Real-time Optimization (RTO). Ideally, the optimization problem should encompass the whole plant and not a single unit, which represents only a local subset of the problem. However, if the standard RTO method, the two-step approach (TS), is applied to the entire plant, the whole system needs to be at steady-state (SS) in order to initiate the optimization cycle. This condition is rarely found in practice. One alternative is to apply Real-time Optimization with Persistent Parameter Adaptation (ROPA). ROPA is an RTO variant that integrates online estimators to the standard TS framework and avoids the need of waiting for steady-state to trigger the optimization cycle. However, the problem shifts to obtaining a dynamic model of the entire plant, which can be challenging and time consuming. This paper proposes a variant of ROPA, named asynchronous ROPA (asROPA), where the plant-wide model is partitioned into submodels and, depending on their characteristics, their parameters are updated using either online or steady-state estimators. Consequently, it is not necessary to obtain a dynamic model for the whole process. This asynchronous updating strategy allows the plant-wide model to be up-to-date to the process and the plant-wide optimization can be scheduled at any arbitrary time. The new strategy is applied to a case study consisting of a system whose model can be partitioned into a separation and a reaction submodel. The plant-wide results indicate that asROPA reacts much faster to the disturbances in comparison to the TS approach, improving the overall economic performance and is able to drive the system to the plant-wide optimum. Additionally, a strategy for partitioning the process and choosing the estimation strategy for each partition is proposed.  相似文献   

9.
This paper proposes a quadratic programming (QP) approach to robust model predictive control (MPC) for constrained linear systems having both model uncertainties and bounded disturbances. To this end, we construct an additional comparison model for worst-case analysis based on a robust control Lyapunov function (RCLF) for the unconstrained system (not necessarily an RCLF in the presence of constraints). This comparison model enables us to transform the given robust MPC problem into a nominal one without uncertain terms. Based on a terminal constraint obtained from the comparison model, we derive a condition for initial states under which the ultimate boundedness of the closed loop is guaranteed without violating state and control constraints. Since this terminal condition is described by linear constraints, the control optimization can be reduced to a QP problem.  相似文献   

10.
1-D engine simulation models are widely used for the analysis and verification of air-path design concepts to assess performance and therefore determine suitable hardware. The transient response is a key driver in the selection process which in most cases requires closed loop control of the model to ensure operation within prescribed physical limits and tracking of reference signals. Since the controller effects the system performance a systematic procedure which achieves close-to-optimal performance is desired, if the full potential of a given hardware configuration is to be properly assessed. For this purpose a particular implementation of Model Predictive Control (MPC) based on a corresponding Mean Value Engine Model (MVEM) is reported here. The MVEM is linearised on-line at each operating point to allow for the formulation of quadratic programming (QP) problems, which are solved as the part of the proposed MPC algorithm. The MPC output is used to control a 1-D engine model. The closed loop performance of such a system is benchmarked against the solution of a related optimal control problem (OCP). The system is also tested for operation at high altitude conditions to demonstrate the ability of the controller to respect specified physical constraints. As an example this study is focused on the transient response of a light-duty automotive Diesel engine. For the cases examined the proposed controller design gives a more systematic procedure than other ad hoc approaches that require considerable tuning effort.  相似文献   

11.
This paper proposes a controller design approach that integrates RTO and MPC for the control of constrained uncertain nonlinear systems. Assuming that the economic function is a known function of constrained system’s states, parameterized by unknown parameters and time-varying, the controller design objective is to simultaneously identify and regulate the system to the optimal operating point. The approach relies on a novel set-based parameter estimation routine and a robust model predictive controller that takes into the effect of parameter estimation errors. A simulation example is used to demonstrate the effectiveness of the design technique.  相似文献   

12.
In real-time optimization (RTO), results analysis is used to ensure that RTO predictions can be implemented and are not the result of the unnecessary variance transmission around the RTO loop. Miletic and Marlin [2] proposed a statistical framework for analyzing RTO results; however, their method cannot effectively deal with inequality constraints. Many industrial RTO implementations include bounds on the changes that the RTO system can make to the process operation (i.e. trust-region constraints). Such trust-region constraints can seriously degrade the performance of existing results analysis methods. In this paper, a results analysis procedure is proposed that incorporates statistical testing on both the primal and dual variables of the optimization problem to effectively analyze steady-state RTO results in the presence of trust-region constraints. The proposed method is illustrated using two small case studies, one of which is the same Williams and Otto [11] reactor example used in [2].  相似文献   

13.
Wang  Dongliang  Wei  Wu  Wang  Xinmei  Gao  Yong  Li  Yanjie  Yu  Qiuda  Fan  Zhun 《Applied Intelligence》2022,52(3):2510-2529

Aiming at the formation control of multiple Mecanum-wheeled mobile robots (MWMRs) with physical constraints and model uncertainties, a novel robust control scheme that combines model predictive control (MPC) and extended state observer-based adaptive sliding mode control (ESO-ASMC) is proposed in this paper. First, a linear MPC strategy is proposed to address the motion constraints of MWMRs, which can transform the robot formation model based on leader-follower into a constrained quadratic programming (QP) problem. The QP problem can be solved iteratively online by a delay neural network (DNN) to obtain the optimal control velocity of the follower robot. Then, to address the input saturation constraints, model uncertainties and unknown disturbances in the dynamic model, an improved ESO-ASMC is proposed and compared with the robust adaptive terminal sliding mode control (RATSMC) and the conventional sliding mode control (SMC) to prove the effectiveness. The proposed scheme, considering the optimal control velocity obtained by the kinematics controller as the given desired velocity of the dynamics controller, can implement precise formation control, while solving various physical constraints of the robot, and eliminating the effects of model uncertainties and disturbances. Finally, through a comparative simulation case, the effectiveness and robustness of the proposed method are verified.

  相似文献   

14.
A gradient-based model predictive control (MPC) strategy was recently proposed to reduce the computational burden derived from the explicit inclusion of an economic real time optimization (RTO). The main idea is to compute a suboptimal solution, which is the convex combination of a feasible solution and a solution of an approximated (linearized) problem. The main benefits of this strategy are that convergence is still guaranteed and good economic performances are obtained, according to several simulation scenarios. The formulation, however, is developed only for the nominal case, which significantly reduces its applicability. In this work, an extension of the gradient-based MPC to explicitly account for disturbances is made. The resulting robust formulation considers a nominal prediction model, but restricted constraints (in order to account for the effect of additive disturbances). The nominal economic performance is preserved and robust stability is ensured. An illustrative example shows the benefits of the proposal.  相似文献   

15.
This article addresses the problem of designing a robust output feedback model predictive control (MPC) with input constraints, which ensures a parameter-dependent quadratic stability and guaranteed cost for the case of linear polytopic systems. A new heuristic method is introduced to guarantee input constraints for the MPC. To reject disturbances and maintain the process at the optimal operating conditions or setpoints, the integrator is added to the controller design procedure. Finally, some numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

16.
Price-driven coordination method for solving plant-wide MPC problems   总被引:1,自引:0,他引:1  
In large-scale model predictive control (MPC) applications, such as plant-wide control, two possible approaches to MPC implementation are centralized and decentralized MPC schemes. These represent the two extremes in the “trade-off” among the desired characteristics of an industrial MPC system, namely accuracy, reliability and maintainability. To achieve optimal plant operations, coordination of decentralized MPC controllers has been identified as both an opportunity and a challenge. Typically, plant-wide MPC problem can be formulated as a large-scale quadratic program (QP) with linking equality constraints. Such problems can be decomposed and solved with the price-driven coordination method and on-line solutions of these structured large-scale optimization problems require an efficient price-adjustment strategy to find an “equilibrium price”. This work develops an efficient price-adjustment algorithm based on Newton’s method, in which sensitivity analysis and active set change identification techniques are employed. With the off-diagonal element abstraction technique and the enhanced priced driven coordination algorithm, a coordinated, decentralized MPC framework is proposed. Several case studies show that the proposed coordination-based decentralized MPC scheme is an effective approach to plant-wide MPC applications, which provides a high degree of reliability and accuracy at a reasonable computational load.  相似文献   

17.
Modifier adaptation (MA) and output modifier adaptation (MAy) are iterative model-based real-time optimization (RTO) algorithms that have the proven ability to drive plants to their optimal operating condition upon convergence despite disturbances and modeling uncertainty, provided the model at hand satisfies model adequacy conditions. But there is no guarantee that constraints are satisfied before convergence. In this article, an improvement of the formulation of MA and MAy is proposed that is proven to bring significant improvements w.r.t. these two limitations – model adequacy and feasibility of iterates. While standard MA or MAy suggests to perform optimization and filtering sequentially, it is proposed to integrate the input filtering stage in the modified model-based optimization problem by means of additional filter-based constraints. The corresponding approach, labeled “KMAy”, is (i) proven to preserve constraint qualification despite additional constraints, (ii) proven to preserve the property of MA methods to converge to the true plant optimal inputs, (iii) proven to significantly relax the model adequacy condition - leading it to be independent of the constraints of the optimization problem, (iv) shown to increase the chances of converging from the safe side of the plant constraints and (v) shown to support the choice of input filtering, instead of output or modifier filtering, if the input filter is appropriately chosen. A method for the automatic selection of the largest filter gain with the five aforementioned assets, while minimizing the filter-induced conservatism, is also proposed. The performances of KMAy with and without adaptive gain are successfully illustrated by means of the optimization of a benchmark simulated chemical reactor.  相似文献   

18.
Model predictive pressure control of steam networks   总被引:2,自引:0,他引:2  
The control scheme of industrial power plants leads typically to a complex multivariable control structure with active constraints to be taken care of. Then Model Predictive Control method (MPC) handles multivariate control problems naturally and optimal control result is calculated considering actuator limitations and constraints of process variables. MPC is applied to control the pressure stability in a multilevel steam network. The system is demonstrated in a simulator environment. MPC can also be used as a convenient tool for analyzing and designing the structure of the steam network. A power plant simulator controlled by MPC helps to decide the location and the capacity of steam levelling components needed to stabilize the operation of the process.  相似文献   

19.
This paper proposes a method to design robust model predictive control (MPC) laws for discrete‐time linear systems with hard mixed constraints on states and inputs, in case of only an inexact solution of the associated quadratic program is available, because of real‐time requirements. By using a recently proposed dual gradient‐projection algorithm, it is proved that the discrepancy of the optimal control law as compared with the obtained one is bounded even if the solver is implemented in fixed‐point arithmetic. By defining an alternative MPC problem with tightened constraints, a feasible solution is obtained for the original MPC problem, which guarantees recursive feasibility and asymptotic stability of the closed‐loop system with respect to a set including the origin, also considering the presence of external disturbances. The proposed MPC law is implemented on a field‐programmable gate array in order to show the practical applicability of the method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Real-time optimization systems have become a common tool, in the continuous manufacturing industries, for improving process performance. Typically, these are on-line, steady-state, model-based optimization systems, whose effectiveness depends on a large number of design decisions. The work presented here addresses one of these design decisions and proposes a systematic approach to the selection of sensors to be used by the RTO system. This paper develops a sensor system selection metric based on a trade-off between two approaches to the design of experiments, which is shown to be consistent with the design cost approach of Forbes and Marlin [Computers Chem Eng 20 (1996) 7/7]. The resulting design metric is incorporated into a systematic procedure for RTO sensor selection problem. Finally, the proposed RTO sensor selection procedure is illustrated with a case study using the Williams–Otto [AIEE Trans 79 (1960), 458] plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号