首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
Solidification of phase change material around a vertical cylindrical surface was studied to investigate the performance of ice storage system and stored thermal energy. Air bubbles were generated in the phase change material at various air flow rate as a gas holdup to enhance the heat transfer rate and accelerate the ice layer growth at the solid–liquid interface. The test tube surface was cooled by ethylene glycol–water solution at a flow rate of 40% concentration by weight. The ice layer growth and solidification front velocity at solid–liquid interface were estimated from the temperature–time recorded data of a set of thermocouples fixed in a radial position perpendicular to cooled surface. The ice layer growth at the first instants of solidification process is much higher. Thereafter it decreased gradually according to the increasing of thermal resistance of ice layer. The increasing of ethylene glycol–water solution mass flow rate seems to accelerate the solidification process with small rate. The effect of air bubbles agitation was found to increase the ice layer growth rate and solidification front velocity by about of 20–45%. As a consequence the stored thermal energy was increased by about 55–115% with increasing air bubbles flow according to the attribute of generates turbulence at the solid–liquid interface. The measured data showed that with stirring the bulk water in energy storage tank, the storage time can be reduced by 10–35% of that without stirring.  相似文献   

2.
A mathematical model was given to predict the mass transfer between flow of a mixture of ammonia vapor and water vapor and a flow of aqua ammonia solution at any interface within a packed bed absorber (PBA). The model used the molal mass and heat transfer coefficients in both the liquid and gas phases, the interface molal solution concentration, interface molal vapor mixture concentration, interface temperature, and the heat transfer coefficients in the liquid and gas phases in both sides of the interface. The heat transfer coefficient was corrected to account for the mass transfer. The model was also used to derive a convenient mass transfer coefficient which was based on the bulk mass concentration, not on the molal concentration, and not directly dependent on the concentration at the interface. To complete the model, mathematical correlations were derived for several thermodynamic and physical properties of aqua ammonia solution and vapor mixture. A computer program was developed to demonstrate the use of the model to predict the rate of absorption of ammonia vapor at an interface within the packed bed at various operating conditions.  相似文献   

3.
In this study, ammonia stripping was optimized for pretreating anaerobic digestion effluent from an anaerobic digestion plant, and the possibility of using CO(2) stripping and biogas injection for adjusting the pH of the effluent before and after the ammonia stripping process was also investigated. For ammonia stripping, the results showed that an overdose of calcium hydroxide, i.e., 27.5g/L wastewater, achieved higher ammonia, phosphorus, chemical oxygen demand, suspended solids, and turbidity removal efficiency. An air flow rate of 5L/min for 1L of wastewater was thought as suitable for engineering application. The pH of the anaerobic digestion effluent can be increased from about 7 to about 9 by CO(2) stripping, however which is insufficient for ammonia stripping. For 1L of wastewater treated after ammonia stripping, the pH can be neutralized to about 7 from greater than 11 through biogas injection at 1L/min for less than 30min, and continuous injection does not decrease the pH. It was roughly estimated that 43m(3) of biogas (CH(4):CO(2) approximately 60%:40%) produced daily could be purified to CH(4):CO(2) approximately 74%:26% by neutralizing the pH of the 5m(3) anaerobic digestion effluent pretreated by ammonia stripping.  相似文献   

4.
This study deals with a data reduction model for clarifying experimental results of a counter-current slug flow absorber, working with ammonia–water mixture, for significantly low solution flow rate conditions. The data reduction model to obtain the local heat and mass transfer coefficient on the liquid side is proposed by using the drift flux model to analyze the flow characteristics. The control volume method and heat and mass transfer analogy are employed to solve the combined heat and mass transfer problem. As a result, it is found that the local heat and mass transfer coefficient on the liquid side of the absorber is greatly influenced by the flow pattern. The heat and mass transfer coefficient at the frost flow region is higher than that at the slug flow region due to flow disturbance and random fluctuation. The solution flow rate and gas flow rate have influence on the local heat and mass transfer coefficient at the frost flow region. However, it is insignificant at the slug flow region.  相似文献   

5.
The goal of the study presented in this paper was to evaluate the impact of different filter types on the performance of three typical packaged air conditioners under both clean and fouled conditions. In a companion paper, combinations of six different levels of filtration and four different coils were tested under clean and fouled conditions. From the tests, it was found that fouling has a relatively small impact on air-side effective heat transfer coefficient, but can have a large impact on coil pressure drop. Data from the experimental study were used in developing simulation models for the three packaged air conditioners. Simulations show that the equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increased pressure drop. In most cases, EER (energy efficiency ratio) was reduced with fouling primarily due to increased fan power. However, the changes in EER were relatively small, in the range of 1–10%. Equipment having low efficiency filters had higher EER after fouling than equipment with high efficiency filters, because high efficiency filters result in significantly higher pressure drops than low efficiency filters. The impact of the evaporator side fan efficiency was found to be significant. The energy penalty associated with high efficiency filters was reduced greatly when fan efficiency increased. Although high efficiency filters cause higher energy penalties they provide considerably better air quality. The quantity of dust passing through the coil with an MERV14 filter was approximately 30 times less than the dust passing the coil with an MERV4 filter. This difference was doubled when the MERV14 filter was compared to a case with no filter in place.  相似文献   

6.
This work provides a detailed mathematical derivation of a steady-state one-dimensional continuous differential air-water contactor (CDAWC) model that describes the material and energy balances in a counterflow wet-cooling tower. The model consists of four ordinary differential equations that describe the changes (along the packed height) of the liquid water temperature, dry-bulb temperature of moist air, liquid water mass flowrate, and moist-air humidity mass ratio. The model is formulated for the cases of unsaturated and supersaturated air, and the model equations are compared to those of previous works. It is shown that the equations of some previous models are approximately equivalent to the equations of the CDAWC model. However, the formulation of the CDAWC model is simpler and the resulting equations have a more general form. A simulation method is proposed to determine accurate values of the volumetric mass transfer coefficient by matching the experimental thermal performance of counterflow wet-cooling towers.  相似文献   

7.
In this study, the heat and mass transfer characteristics of heat exchangers during frost formation process are analyzed numerically. Unsteady heat and mass transfer coefficients of the air side, heat transfer coefficient of the refrigerant side, air-frost layer interface temperature, the surface efficiency of the heat exchanger and the mass flow rate of the frost accumulated on the heat exchanger surface are calculated. The total conductivity (UA) and pressure drop of the heat exchanger are reported for different air inlet temperature, relative humidity, air mass flow rate and the refrigerant temperature.  相似文献   

8.
Experiments have been carried out in a draft tube fluidized bed bioreactor to study biodegradation of synthetic wastewater containing phenol. The microorganism employed in the study Psuedomonas putida has been immobilized on solid support particles. Studies have been carried out at different feed concentrations of phenol, air flow rates and feed flow rates. The mass transfer coefficient for phenol transfer from bulk phase to the surface of the biofilm on the solid particle has been estimated from observed experimental data using the conservation equations. The mass transfer coefficient was found to be in the range of 0.0726 x 10(-5) to 0.2012 x 10(-5) m s(-1). It was found to increase with increase in feed concentration, air flow rate and feed flow rate. A dimensionless correlation has been developed for the mass transfer coefficient in terms of Sherwood, Reynolds and Schmidt numbers, and the same has been compared with correlations available in literature.  相似文献   

9.
对溶液除湿器中传热传质过程进行热力学分析,根据除湿塔的结构及溶液与空气的流动方式,建立除湿器的热质交换物理和数学模型,模拟计算除湿器人口空气和溶液参数对除湿器出口空气参数的影响,得到各入口参数对出口空气温度和含湿量的影响曲线。结果表明:空气出口参数与空气人口含湿量、温度和流量、溶液人口温度和浓度几乎呈线性变化;当溶液入口流量达到2.5kg/s后,空气出口参数的变化趋于平缓。  相似文献   

10.
The objectives of this paper are to analyze a combined heat and mass transfer for an ammonia–water absorption process, and to carry out the parametric analysis to evaluate the effects of important variables such as heat and mass transfer areas on the absorption rate for two different absorption modes — falling film and bubble modes. A plate heat exchanger with an offset strip fin (OSF) in the coolant side was used to design the falling film and the bubble absorber. It was found that the local absorption rate of the bubble mode was always higher than that of the falling film model leading to about 48.7% smaller size of the heat exchanger than the falling film mode. For the falling film absorption mode, mass transfer resistance was dominant in the liquid flow while both heat and mass transfer resistances were considerable in the vapor flow. For the bubble absorption mode, mass transfer resistance was dominant in the liquid flow while heat transfer resistance was dominant in the vapor region. Heat transfer coefficients had a more significant effect on the heat exchanger size (absorption rate) in the falling film mode than in the bubble mode, while mass transfer coefficients had a more significant effect in the bubble mode than in the falling film mode.  相似文献   

11.
膜吸收法应用于氨氮废水净化的研究   总被引:2,自引:0,他引:2  
在去除废水里氨氮的3种膜吸收方式中,吸收式膜吸收法能在最短时间内将水中氨氮降至较低水平.因此,它被认为是最有效的方法.研究表明,废水的pH是影响传质系数的最主要因素;氨氮浓度对膜通量影响较大,氨氮浓度越高,氨的膜通量越大;废水中氨氮或盐量较高时,能有效抑制水的渗透蒸馏通量,减弱对吸收液的稀释作用.通过运用吸收式膜吸收法对以无机污染物为主的高氨氮废水和以有机污染物为主的剩余氨水处理效果作对比研究,进而得出以下结论:膜吸收法适用于处理含盐量较高、中温、油性污染物含量较低的高氨氮废水.最后还初步探讨了膜的污染和再生情况.  相似文献   

12.
In this paper, high performance packing, namely, structured packing that has good heat and mass transfer characteristics, is proposed for dehumidification of air using liquid desiccants and for regeneration of liquid desiccants. In order to design a structured packing tower for liquid desiccant — air contacting operations, heat and mass transfer coefficients for each phase are required. This paper is concerned with the interface transfer of heat and mass when air is brought into contact with the liquid desiccant solution. A theoretical study of evaluating heat and mass coefficients in an air-desiccant contact system employing three liquid desiccants, namely calcium chloride, lithium chloride, and a mixture of 50% calcium chloride and 50% lithium chloride (called cost effective liquid desiccant, CELD) is investigated. Moreover, air phase transfer coefficients are correlated with flow rates of air and liquid and the temperature of air, whereas liquid phase coefficients are correlated with rates of air and liquid flow, and the temperature and concentration of the liquid. The findings for the three liquid desiccants are compared and discussed.  相似文献   

13.
In this article, experimental analysis was performed for ammonia–water falling film absorption process in a plate heat exchanger with enhanced surfaces such as offset strip fin. This article examined the effects of liquid and vapor flow characteristics, inlet subcooling of the liquid flow and inlet concentration difference on heat and mass transfer performance. The inlet liquid concentration was selected as 5%, 10% and 15% of ammonia by mass while the inlet vapor concentration was varied from 64.7% to 79.7%. It was found that before absorption started, there was a rectification process at the top of the test section by the inlet subcooling effect. Water desorption phenomenon was found near the bottom of the test section. It was found that the lower inlet liquid temperature and the higher inlet vapor temperature, the higher Nusselt and Sherwood numbers are obtained. Nusselt and Sherwood number correlations were developed as functions of falling film Reynolds Re1, vapor Reynolds number Rev, inlet subcooling and inlet concentration difference with ±15% and ±20% error bands, respectively.  相似文献   

14.
This study deals with an experimental investigation for a counter-current slug flow absorber, working with ammonia–water mixture, for significantly low solution flow rate conditions that are required for operating as the GAX (generator absorber heat exchanger) cycle. It is confirmed that the slug flow absorber operates well at the low solution flow rate conditions. From visualization results of the flow pattern, frost flow just after the gas inlet, followed by slug flow with well-shaped Taylor bubble, is observed, while dry patch on the tube wall are not observed. The liquid film at the slug flow region has smooth gas–liquid interface structure without apparent wavy motion. The local heat transfer rate is measured by varying main parameters, namely, ammonia gas flow rate, solution flow rate, ammonia concentration of inlet solution and coolant inlet conditions. The heat transfer rate while absorption is taking place is higher than that after absorption has ended. The absorption length is greatly influenced by varying main parameters, due to flow conditions and thermal conditions.  相似文献   

15.
分析了液体调湿过程产生RBM效应的机理,考察了除湿和再生过程的RBM效应以及RBM效应对热质传递性能的影响.结果表明:气液热质交换导致液膜温度、密度在径向和流向方向分布不均,形成表面张力梯度和密度梯度,引发RBM效应;RBM效应严重影响传热传质效率和润湿率,影响程度因热质交换条件不同差异很大.  相似文献   

16.
The objectives of this paper are to study the effect of key parameters on absorption performance and to develop an experimental correlation of mass transfer coefficient for ammonia–water bubble absorption. The orifice diameter, liquid concentration and vapor velocity are considered as the key parameters. This study successfully visualized the bubble behavior and measured the volumetric diameter of bubbles during the bubble absorption process. The bubble absorption is grouped into two processes, bubble growth (process I) and bubble disappearance (process II), respectively. The following conclusions were drawn from the present study. A new experimental correlation for the volumetric bubble diameter was proposed with ±15% error band, which could be applied to calculate the mass transfer coefficient. The mass transfer coefficient increased with a decrease of the liquid concentration. In process II, the mass transfer coefficient increased with an increase of the Galileo number. Finally, experimental correlations of mass transfer coefficient were developed for processes I and II with ±18% error bands.  相似文献   

17.
The heat transfer characteristics were experimentally investigated for ice slurry made from 6.5% ethylene glycol–water solution flow in a 13.84 mm internal diameter, 1500 mm long horizontal copper tube. The ice slurry was heated by hot water circulated at the annulus gap of the test section. Experiments of the melting process were conducted with changing the ice slurry mass flux and the ice fraction from 800 to 3500 kg/m2 s and 0–25%, respectively. During the experiment, it was found that the measured heat transfer rates increase with the mass flow rate and ice fraction; however, the effect of ice fraction appears not to be significant at high mass flow rate. At the region of low mass flow rates, a sharp increase in the heat transfer coefficient was observed when the ice fraction was more than 10%.  相似文献   

18.
膜法染料废水处理工艺研究   总被引:17,自引:0,他引:17  
用乙酸纤维素纳滤膜 ,对染料厂的高盐度、高色度、高CODCr染料废水的处理操作条件 (进料量、压力 )、浓缩过程 (染料含量、浓缩倍率 )、膜的污染和清洗等方面进行了详细研究 .结果表明 ,用纳滤膜技术处理染料废水时 ,过程的通量随着进料流量和操作压力的升高而增大 ,并随着浓缩过程的进行即染料含量和浓缩倍率的增加而下降 ,但仍对染料保持很高的截留率 ,且在高染料浓度 (高浓缩倍率 )下 ,压力对通量影响下降 :在过程回收率达到 80 %(浓缩 5倍 )的情况下 ,膜对废水中色度和CODCr的去除率仍相当高 ;有效的膜清洗则可提高纳滤膜处理染料废水过程的效率 ,延长膜使用寿命 ,从而使纳滤膜法染料废水处理工艺技术更具实用价值 .  相似文献   

19.
水冷却塔传质过程理论模型研究   总被引:1,自引:0,他引:1  
杨丽明  张金涛 《制冷》2000,19(4):12-15
现有描述冷动塔填料表面传热传质过程的理论模型都与一个经验K值有关,由于以往的研究者都将这个系数表示成水气流量的函数,没有正确地提示揭示传质过程的本质,本文采用液膜蒸发理论,将K值有示成湿空气温差及压差的函数,通过对某些已知实验条件的实验结果进行验算,发现该模型能正确的描述冷动填料表面的传质过程,采用基于液膜蒸发理论的新模型将改善冷动塔的设计方法。  相似文献   

20.
A study of absorption of ammonia vapour bubbles into a constrained thin-film of ammonia-water solution is presented. A large-aspect-ratio microchannel constrains the thickness of the weak solution film and ammonia vapour bubbles are injected from a porous wall. A counter flowing coolant in a minichannel removes the generated heat of absorption. Experiments and a simple one-dimensional numerical model are used to characterize the absorber performance at a nominal system pressure of 6.2 bar absolute. Effect of varying the mass flow rate of the weak solution, vapour flow rate, solution inlet temperature, and coolant inlet temperature on absorption heat and mass transfer rates and exit subcooling are discussed. Two absorber channel geometries, each of 600 μm nominal depth, are considered: 1) a smooth-wall channel, and 2) a stepped-wall channel that has 2-mm deep trenches across the width of a channel wall. Results indicate that the reduction in coolant inlet temperature significantly enhances the mass transfer rates in both absorber geometries. While the stepped-wall geometry exhibits higher mass transfer rates at lower coolant inlet temperatures of 30 °C and 40 °C, the smooth-wall channel shows higher mass transfer rates at the highest coolant inlet temperature of 58 °C. Both absorption limited and residence time limited conditions are observed with variation of weak solution flow rate at fixed vapour flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号