首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
借助偏光显微镜、扫描电镜、透射电镜对具有热解炭过渡层的中间相沥青基炭/炭复合材料的微观结构进行了研究。结果表明:材料的基体由热解炭和中间相沥青炭组成,在偏光显微镜下均呈现出光学各向异性。材料内部形成了多层次的界面结构,热解炭与纤维的界面连续,界面层内的石墨微晶择优取向度较高,晶格条纹排列规整;中间相沥青炭与热解炭界面不连续,为"裂纹型"界面,界面层内主要为非晶态碳。材料中炭纤维、热解炭、中间相沥青炭的石墨微晶大小逐渐增大,择优取向度逐渐增高,晶格条纹的排列逐渐规整。片层条带状结构的中间相沥青炭以及材料内的微裂纹平行于炭纤维轴向。  相似文献   

2.
本文研究了高导热(500~1 127 W·m~(-1)·K~(-1))中间相沥青基炭纤维的微观结构特征,初步建立了微观结构特征与导热性能之间的影响关系。通过XRD、拉曼光谱、SEM和TEM对纤维的显微结构进行了系统表征,结果表明,辐射状的纤维结构热导率较高,并伴随着劈裂状结构特征。La对热导率的影响比Lc更加显著,纤维截面上的R值可作为评估热导率的重要参照指标。在本研究所涉及的纤维中,石墨微晶尺寸越大,微晶缺陷越少,石墨微晶片层沿纤维轴向取向度越好,则炭纤维的热导率越高。  相似文献   

3.
含有大量液晶分子的中间相沥青是制备轴向高导热炭/炭复合材料的重要原料,以中间相沥青基炭纤维为增强体与中间相沥青基体经液相浸渍法制备高导热炭/炭复合材料。中间相沥青基体随着热处理温度不断升高逐渐转化为包含诸多缺陷的石墨晶体,这些缺陷对复合材料的热传导有较大影响。利用透射电子显微镜研究中间相沥青基石墨晶体中的缺陷结构,尤其是不完整石墨晶体[11 0]晶带轴衍射谱中(10)列衍射斑点拉线的成因。结果表明,中间相沥青基体经3 000℃热处理后主要形成六角石墨,但六角石墨主体中夹杂数层菱形石墨,进一步发现,够成(10)列衍射拉线的缺陷主要包括两类:层错(基面间不同程度位移形成的位移缺陷)和晶界(相邻晶粒间相互旋转形成的旋转缺陷以及非共格晶界)。  相似文献   

4.
以中间相沥青为原料, 采用不同长宽比的矩形截面喷丝板, 通过控制熔融纺丝时的收丝速率, 制得了具有不同截面尺寸和晶体取向的高定向中间相沥青基带状炭纤维, 并研究了热处理温度和喷丝孔截面尺寸对所得炭纤维结构和性能的影响。结果表明, 喷丝孔的形状和收丝速度对炭纤维的晶体取向有显著影响。当收丝速度一定时, 随着喷丝孔截面长宽比的减小, 带状炭纤维截面碳晶体层片由褶皱平行取向结构向辐射状垂直取向结构转变。随着热处理温度的升高, 所制得炭纤维的室温轴向电阻率显著减小, 热导率相应增大, 力学性能明显提高; 随着收丝速率的增大, 带状炭纤维室温轴向电阻率变化不大, 但对其力学性能有显著影响。当喷丝孔截面长宽比和纺丝速度分别为30:1和75 m/min 时, 2500℃石墨化纤维的拉伸强度和杨氏模量分别为2.53 GPa和234.77 GPa。  相似文献   

5.
以中间相沥青基短切炭纤维和中间相沥青为原料,采用模压成型、炭化、致密化、高温石墨化等一系列常规工艺,制备了传导性能良好的炭/炭复合材料.主要考察了中间相沥青与中间相沥青基炭纤维质量配比对材料密度及传导性能的影响,并进一步研究了材料微晶参数的变化与材料性能的相关性.结果表明中间相沥青与纤维质量配比对材料的导热、导电性能以及微晶参数有很大影响.随着中间相沥青用量的增大,材料导热、导电性能均提高,石墨层间距d002减小,石墨微晶尺寸La、Lc增大;当中间相沥青与炭纤维质量比为 0.8时,制备出的炭/炭复合材料石墨微晶尺寸最大,常温传导性能最佳(垂直于压制方向的面向热导率为385W/(m·K),电阻率为2.85μΩ·m);进一步提高中间相沥青用量,石墨微晶尺寸La、Lc减小,材料的传导性能降低.  相似文献   

6.
以中间相沥青为粘结剂, 采用500 ℃低温炭化炭纤维, 经低压模压成型、炭化和石墨化后得到低密度高导热炭纤维网络体。与以1300 ℃炭化炭纤维为原料和以酚醛为粘结剂制备的炭纤维网络体进行了比较。对粘结剂炭收率(热重分析)、样品微观形貌(扫描电子显微分析)、石墨化度及微晶尺寸(X射线衍射分析)等进行了表征。研究结果表明: 由于高炭收率和高片层取向度的中间相沥青与500 ℃低温炭化处理炭纤维共同经历后续热处理时呈现出相近的热收缩率, 因而具备良好的相互粘结性和石墨片层铆接效应, 其制备的炭纤维网络体经石墨化后密度为0.317 g?cm -3, 由此制备的相变复合材料的面内热导率为19.30 W·m -1·K -1, 较纯相变材料(石蜡)提升了80倍, 明显高于以1300 ℃炭化炭纤维为原料, 以中间相沥青和酚醛分别为粘结剂制备样品的面内热导率(17.03和14.47 W·m -1·K -1)。  相似文献   

7.
微电子及通讯技术领域的快速发展对热管理材料提出了更高要求,迫切需要设计和开发高定向导热炭材料。高定向炭材料因其较高的石墨微晶结晶度和石墨化度、有序规整堆叠的石墨烯层片,而具有典型的各向异性高导热特性。粉末状炭材料(如鳞片石墨、气相生长炭纤维、纳米碳管、石墨烯等)的热导率虽然很高,但作为导热填料制备的复合材料的整体导热效果不佳,因此其在大型高功率集成器件散热领域的应用会受到一定限制。控制炭材料内部石墨微晶大小、取向和取向连续性是实现炭材料高定向导热性的关键。通过选择合适的碳质前驱体、成型工艺和热处理条件,调控石墨烯层片连续取向得到的宏观尺寸炭材料(如柔性石墨、天然鳞片石墨模压块、高定向热解石墨、聚酰亚胺石墨膜/块体、中间相沥青基炭纤维连续长丝及其复合材料等),可使石墨晶体沿(002)晶面方向保持高导热特性,实现高定向、连续、多维度可调控热传导,因此在导热、散热、热防护等领域具有广阔的应用市场。  相似文献   

8.
基于工程化设备,在恒定挤出量条件下,通过调控纺丝温度制备了中间相沥青炭纤维(MPCFs),探究纺丝温度对MPCFs微观结构、力学和导热性能的影响。结果表明:随着纺丝温度由309升高至320°C,MPCFs的微观结构由石墨片层细小的褶皱劈裂辐射状结构逐步向石墨片层粗大的劈裂辐射状结构转变,拉伸强度由2.16增大到3.23 GPa,热导率由704升高到1 078 W·m-1·K-1。这主要是因为纺丝温度越高,沥青熔体黏度越小,喷丝口处挤出胀大效应越弱,沥青熔体在喷丝孔流道内形成的微晶取向得以保持,以此制备的炭纤维具有更大的晶体尺寸和更高的微晶取向。  相似文献   

9.
中间相沥青基炭纤维因具有高模量、低电阻率、高导热等特性,在许多领域有广阔的应用前景。本文分别以采用HF/BF3催化萘一步法制备的中间相沥青(AR-MP)和采用AlCl3催化萘两步法制备的中间相沥青(N-MP)为原料,制备了高性能炭纤维。通过元素分析、TG-MS、FT-IR、13C-NMR、MALDI-TOF-MS、XRD和SEM等手段对上述沥青和纤维进行了分析表征,对比了不同催化聚合工艺制备的中间相沥青的分子结构和性能,并进一步探究了中间相沥青分子结构差异对其炭纤维结构和性能的影响。结果表明:AR-MP分子构型偏向于半刚性的棒状,含有更多的环烷结构和甲基侧链,其预氧化后的纤维显示出更好的碳平面取向,使其石墨化纤维具有更好的热导率(716 W/m·K);而N-MP分子构型偏向于刚性的圆盘状、芳香度高,其纤维在后续热处理过程中产生的缺陷更少,石墨化后具有更大的拉伸强度(3.47 GPa)。  相似文献   

10.
以高导热沥青基炭纤维布为增强体,中间相沥青为黏结剂,采用热模压成型及液相浸渍裂解工艺增密,并经高温石墨化处理制备二维高导热炭/炭复合材料。利用X射线衍射仪和透射电子显微镜对经不同温度处理后的沥青基炭纤维及二维高导热炭/炭复合材料的结构和形貌变化进行表征,并考察石墨化处理温度对复合材料热导率的影响。结果表明,随着热处理温度的升高,纤维及复合材料内部石墨微晶尺寸增大、取向度变好,纤维与基体间界面结合紧密、裂纹减少,而基体碳层间裂纹则呈扩大趋势。此外,二维高导热炭/炭复合材料的热导率随热处理温度的升高而线性增加,经3 000℃处理后,材料热导率高达443 W/m·K。  相似文献   

11.
不同形状中间相沥青炭纤维的横断面结构   总被引:3,自引:0,他引:3  
在场发射扫描电子显微镜(FE-SEM)下观察了圆形、中空、条形和Y-形中间相沥青炭纤维的横断面结构,用流变学理论分析了纺丝过程中几种炭纤维结构的形成,提出中空纤维纺制时沥青流体的最大流速线在喷丝孔中心线的内侧,并根据中空炭纤维横断面的显微照片对此加以证实,用催化缩聚中间相沥青制备的条形炭纤维显示出的特殊弧形对称结构,起因于中间相沥青的流变性质和条形喷丝孔的形状设计,非圆形中间相沥青炭纤维趋向于以线  相似文献   

12.
Wu  Huang  Huang  Dong  Ye  Chong  Ouyang  Ting  Zhu  Shipeng  Fan  Zhen  Ye  Gaoming  Wu  Xiao  Shi  Kui  Han  Fei  Liu  Hongbo  Liu  Jinshui 《Journal of Materials Science》2022,57(4):2411-2423
Journal of Materials Science - High alignment of graphene in mesophase pitch-based carbon fibers endows them with excellent properties such as high thermal conductivity and ultrahigh modulus....  相似文献   

13.
中间相沥青基碳/碳复合材料的组织与性能   总被引:7,自引:0,他引:7  
以3K PAN基碳纤维为增强体,以中间相沥青为基体前驱体,采用压力浸渍-碳化工艺制备出2D中间相沥青基碳/碳复合材料.研究分析了材料的偏光组织结构、弯曲性能及弯曲断口形貌,结果表明:基体碳的组织结构随碳化压力的不同而变化,低压时以小域组织为主,高压时以广域流线型组织为主;材料的抗弯强度、密度随碳化压力的增加而增高,最高抗弯强度可达278MPa;断裂特征与材料的密度、界面结合状况有关,密度较高、界面结合适中时,弯曲断口以纤维断裂、纤维拔出为主,材料具有韧性断裂特征.  相似文献   

14.
为制备中间相沥青基镀镍碳纤维,本文对比研究了电磁搅拌法和超声波法两种镀镍工艺,结果表明,两种工艺均可制备出表面镍含量较高的碳纤维,但超声波法制备的镀镍碳纤维的连续性优于电磁搅拌法,适合后续结构型吸波复合材料的制备。对镀镍碳纤维的电磁性能的研究发现,镀镍后碳纤维的电损耗参数下降,磁导率提高,利于低频带吸收。利用中间相沥青基镀镍碳纤维制备出树脂基复合材料,对其吸波性能进行测试,研究结果发现:以镀镍纤维层间全平行排布铺层制备的复合材料与未加镀镍碳纤维的相比,同时提高了在低频带和高频带的吸波效果,在14.88GHz吸收峰峰值为-27.62dB,低于-5dB的累积频宽约为14GHz,低于-10dB的累积频宽约为6.5GHz,吸波效果明显。  相似文献   

15.
《Composites Part A》2001,32(8):1031-1038
Previous work at Clemson University has shown that ribbon-shaped mesophase pitch-based carbon fibers graphitized at only 2400°C can develop thermal conductivities comparable with those of commercial round-shaped pitch-based carbon fibers graphitized at temperatures above 3000°C. The thermal and electronic transport properties (i.e. thermal conductivity and electrical resistivity) of ribbon-shaped carbon fibers produced at Clemson University are being studied. In addition, the structure of these fibers is being analyzed by electron microscopy and X-ray diffraction techniques. This paper will discuss the relationships between processing conditions, fiber structure and fiber properties.  相似文献   

16.
Carbon fibers are widely used as reinforcements in composite materials because of their high specific strength and modulus. Today, a number of ultrahigh strength polyacrylonitrile (PAN)-based (more than 6?GPa), and ultrahigh modulus pitch-based (more than 900?GPa) carbon fibers have been commercially available. In contrast, carbon nanotube (CNT) with the extremely high tensile strength have attracted attention as reinforcements. An interesting technique to modify the carbon fiber is CNT grafting on the carbon fiber surface. CNT-grafted carbon fibers offer the opportunity to add the potential benefits of nanoscale reinforcement to well-established fibrous composites to create micro-nano multiscale hybrid composites. In the present study, the tensile properties of CNT grown on T1000GB PAN- and K13D pitch-based carbon fibers have been investigated. Single filament tensile test at gauge lengths of 1, 5, and 25?mm were conducted. The effect of gauge length on tensile strength and Weibull modulus of CNT-grafted PAN- and pitch-based carbon fibers were evaluated. It was found that grafting of CNT improves the tensile strength and Weibull modulus of PAN- and pitch-based carbon fibers with longer gauge length (≥5?mm). The results also clearly show that for CNT-grafted and as-received PAN- and pitch-based carbon fibers, there is a linear relation between the Weibull modulus and the average tensile strength on log–log scale.  相似文献   

17.
Carbon fibers are widely used as a reinforcement in composite materials because of their high specific strength and modulus. Current trends toward the development of carbon fibers have been driven in two directions; ultrahigh tensile strength fiber with a fairly high strain to failure (~2%), and ultrahigh modulus fiber with high thermal conductivity. Today, a number of ultrahigh strength polyacrylonitrile (PAN)-based (more than 6 GPa), and ultrahigh modulus pitch-based (more than 900 GPa) carbon fibers have been commercially available. In this study, the tensile strengths of PAN- and pitch-based carbon fibers have been investigated using a single filament tensile test at various gauge lengths ranging from 1 to 250 mm. Carbon fibers used in this study were ultrahigh strength PAN-based (T1000GB, IM600), a high strength PAN-based (T300), a high modulus PAN-based (M60JB), an ultrahigh modulus pitch-based (K13D), and a high ductility pitch-based (XN-05) carbon fibers. The statistical distributions of the tensile strength were characterized. It was found that the Weibull modulus and the average tensile strength increased with decreasing gauge length, a linear relation between the Weibull modulus, the average tensile strength and the gauge length was established on log–log scale. The results also clearly show that for PAN- and pitch-based carbon fibers, there is a linear relation between the Weibull modulus and the average tensile strength on log–log scale.  相似文献   

18.
利用中间相沥青纤维中沥青分子的高度择优取向和适度的热塑性热压制备高导热块体炭材料. 对比研究了经不同氧化处理的带形及圆形中间相沥青纤维热压所得炭材料的传导性及力学性能. 结果表明: 相对圆形纤维来说, 由于带形中间相纤维具有更高的纤维轴向取向度和纤维之间更高的接触面积, 故其热压所得材料具有更高的密度和传导性. 经260℃氧化的带形纤维热压所得炭材料的密度、抗弯强度、电阻率及热导率分别达到了2.18g·cm-3、118.4MPa、1.13μΩm和717W/m·K.  相似文献   

19.
Carbon fibers are widely used as a reinforcement in composite materials because of their high-specific strength and modulus. Current trends toward the development of carbon fibers have been driven in two directions; ultrahigh tensile strength fiber with a fairly high strain to failure (~2 %), and ultrahigh modulus fiber with high-thermal conductivity. Today, a number of ultrahigh strength polyacrylonitrile (PAN)-based (more than 6 GPa), and ultrahigh modulus pitch-based (more than 900 GPa) carbon fibers have been commercially available. In the present work, the tensile properties of polyimide-coated PAN-based (T1000GB, T300, and M60JB) and pitch-based (K13D and XN-05) carbon fibers have been investigated using a single-filament tensile test. The pyromellitic dianhydride/4-4′-oxydianiline polyimide coating was deposited on the carbon fiber surface using high-temperature vapor deposition polymerization (VDPH). The Weibull statistical distributions of the tensile strength were characterized. The results clearly show that the VDPH polyimide coating improves the tensile strength and the Weibull modulus of PAN- and pitch-based carbon fibers.  相似文献   

20.
一维高导热C/C复合材料的制备研究   总被引:1,自引:0,他引:1  
以三种沥青作为基体前驱体, 实验室自制的AR中间相沥青基纤维为增强体, 通过500℃热压成型, 随后经炭化和石墨化处理制备出一维炭/炭(C/C)复合材料。研究了前驱体沥青种类和热处理温度对复合材料导热性能的影响, 并采用扫描电子显微镜和偏光显微镜对其石墨化样品的形貌和微观结构进行表征。结果表明; C/C复合材料在沿纤维轴向的室温热扩散系数和导热率均随热处理温度的升高而逐渐增大; 由AR沥青作为基体前驱体所制备的C/C复合材料具有更加明显的沿纤维轴向取向的石墨层状结构以及最好的导热性能, 其3000℃石墨化样品沿纤维轴向的室温热扩散系数和导热率分别达到594.5 mm2/s和734.4 W/(m·K)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号