首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 809 毫秒
1.
共晶Sn-Ag-Cu无铅焊料由于成本和可靠性问题导致应用受到限制,将Sn-2Ag-2.5Zn低银含量合金焊料与不同基板焊接,研究焊接后界面反应以及随后不同时效处理条件下的组织形貌变化及可靠性。Sn-2Ag-2.5Zn焊料由直接熔炼法制成焊球,将焊球置于焊接强度测试仪中与基板加热焊接,随后将焊点置于加热炉中进行时效处理。结果表明:焊料与裸Cu基板焊接,时效处理后在界面处形成Cu5Zn8和Ag3Sn致密双层IMC结构,双层结构相互阻隔,限制铜锡IMC的发展。焊料与电镀有Ni阻挡层Cu基板焊接,焊接界面形成薄层Ni3Sn4金属化合物,时效1 000 h后Ni3Sn4的厚度约为1 μm,Ni阻挡层的厚度保持在2~3 μm, Ni阻挡层的阻挡效果稳定。Sn-2Ag-2.5Zn焊料在长时效处理中损耗性能优良,耐热时效处理性好,焊料连接的质量较好,界面可靠性较高,对环境污染少。Sn-2Ag-2.5Zn焊料中低银含量使得成本大幅下降,不容易形成粗大的金属间化合物Ag3Sn,性能有所改善,是一种非常有应用前途的合金焊料。  相似文献   

2.
通过向Sn-0.3Ag-0.7Cu系无铅焊料中添加微量稀土Ce,研究不同稀土含量对Sn-0.3Ag-0.7Cu合金的熔化温度和润湿性的影响,同时利用扫描电子显微镜(SEM)对焊料的显微组织进行了分析.实验结果表明,添加Ce对焊料的熔化温度影响不大,但对合金的润湿性和微观组织影响较大.当ω(Ce)=0.10%时,焊料合金的综合性能较好.  相似文献   

3.
杨海平 《材料导报》2007,21(F05):378-379,387
在~10^2K/s、~10^3K/s和~10^4K/s的冷速条件下研究了凝固速度对无铅焊料Sn-3.SAg合金微观组织和显微硬度的影响。结果表明:由于非平衡凝固条件下动力学过冷的影响,导致了该共晶合金实际凝固过程开始于平衡共晶凝固点以下,合金凝固组织中包含初生β-Sn枝晶,且该初生β-Sn枝晶组织随合金凝固速度的提高而发生细化。另外,维氏硬度测试结果表明,无铅焊料Sn-3.5ag合金在不同冷速条件下的凝固组织与显微硬度的关系符合经典Hall-Petch关系式,即初生β-Sn枝晶细化能显著提高焊料合金的显微硬度。  相似文献   

4.
纳米压入法研究无铅焊料应变率敏感性   总被引:2,自引:0,他引:2  
采用纳米压入法对Sn-3.0Ag-0.5Cu、Sn-0.7Cu及Sn-3.5Ag无铅焊料的室温应变率敏感性进行研究。相同压深下,压入载荷随着加载应变率的提高而增大;3种焊料的接触刚度均随压深近似线性增加,不同应变率下弹性模量基本不变;硬度随着应变率的增加而增大,表明了无铅焊料的塑性应变率强化性。保载阶段蠕变位移随加载段应变率的增加而增大,蠕变应变率先急剧下降然后趋于稳定。通过系统研究应变率对3种常用无铅焊料力学性能的影响,为评价无铅焊点的服役可靠性提供参考。  相似文献   

5.
冷却速度对Sn-Ag无铅焊料微观组织和机械性能的影响   总被引:3,自引:0,他引:3  
研究了不同冷却速度下无铅焊料Sn-3.5%(质量分数)Ag合金的微观形貌(冷却速度从0.08K/s到10^4K/s)。结果表明焊料合金中二次枝晶间距随冷却速度增加而逐渐减小,且符合公式:d=atf^n,其中d为二次枝晶间距,tf是冷却时间,a和n是由材料和其成分所决定的常数,通过计算得到对于Sn-3.5%(质量分数)Ag合金其a为3.7,而n为0.43。维氏硬度测试结果表明:快速冷却条件能使焊料合金晶粒细化,其中作为强化相的金属间化合物Ag3Sn分布更加细密,从而能使整个合金机械性能得到提高。  相似文献   

6.
The microstructure and melting behavior of Sn-9Zn-2Cu (SZC) lead-free solder with 3 wt pct Bi and various amount of Ni additions were studied. The wetting properties and the interracial reaction of Sn-Zn-Cu with Cu substrate were also examined. The results indicated that the addition of 3 wt pct Bi could decrease the melting point of the solder and Ni would refine the microstructure and the rod-shape Cu5Zn8 phase changed into square-shape (Cu, Ni)5Zn8 phase. The addition of Bi, Ni greatly improved the wettability of SZC solder. In addition, the interracial phase of the solders/Cu joint was typical planar Cu5Zn8 in SZC-3Bi-INi alloy.  相似文献   

7.
自从美国国家电子制造业创进会(National Electronics Manufacturing Initiative,NEMI)在2000年推荐Sn-3.9Ag-0.6Cu用于热焊接,Sn-3.5Ag和Sn_0.7Cu用于波动焊接后,人们为提高这种无铅钎料的可靠性做出了巨大的努力。研究钎料合金的组分和制备工艺对性能的关系对于考察焊接可靠性有极大帮助。然而,  相似文献   

8.
黄惠珍  卢德  赵骏韦  魏秀琴 《材料导报》2016,30(14):104-108
研究了添加Bi和P对Sn-0.7Cu无铅钎料合金熔点、显微组织、在Cu上的润湿性、导电率、硬度以及蠕变抗力等性能的影响。实验结果显示,随Bi含量增加,Sn-0.7Cu合金的熔点、导电率略有降低,润湿性、抗蠕变性能和维氏硬度均提高;此外,在添加Bi的基础上加P元素,能进一步降低Sn-0.7Cu-Bi合金的熔点,提高合金的导电率和润湿能力,但合金硬度略有下降;Sn-0.7Cu-1Bi-0.05P钎料合金的抗蠕变性优于Sn-0.7Cu-1Bi,Sn-0.7Cu-3Bi-0.05P钎料合金的抗蠕变性则劣于Sn-0.7Cu-3Bi。金相显微组织观察表明,单独加Bi能细化Sn-0.7Cu合金中的Cu6Sn5金属间化合物相;P的加入使Sn-0.7Cu-1Bi合金中的β-Sn枝晶尺寸变小,且Cu6Sn5相呈规则网络状分布于枝晶间隙;而在Sn-0.7Cu-3Bi合金中加P则粗化了Cu6Sn5相,并使IMC呈无规则分布。  相似文献   

9.
杨斌  陈剑明  邬善江  李明茂  张建波 《材料导报》2017,31(14):92-95, 104
采用熔炼铸造法制备了Sn-58Bi-(0~3)Ga焊料合金,研究了Ga元素含量对合金熔化特性、润湿和剪切性能的影响,并利用扫描电镜研究了Sn-58Bi-(0~3)Ga/Cu基体界面特征。结果表明,Ga元素的添加降低了合金的熔点,增大了合金的熔程,相比于Sn-58Bi合金,Sn-58Bi-1Ga焊料合金在铜基体的铺展率显著下降,剪切强度略有提高,随着Ga含量提高至2%、3%,合金的铺展率略有下降,剪切强度显著降低;Sn-58Bi/Cu界面主要组成元素为Sn和Cu,Sn-58Bi-(1~3)Ga/Cu界面上出现了明显的Ga和Cu元素偏聚界面层,结合特征点的能谱成分分析,确定了界面化合物的组成。  相似文献   

10.
无铅焊料Sn-3.8Ag-0.7Cu的低周疲劳行为   总被引:2,自引:0,他引:2  
测量了Sn-3.8Ag-0.7Cu无铅焊料试样的循环滞后回线、循环应力响应曲线、循环应力-应变和应变寿命关系,研究了焊料在总应变幅控制下的低周疲劳行为结果表明:该焊料合金在总应变幅较高(1%)时发生连续的循环软化,而在总应变幅较低(≤0.4%)时则表现为循环稳定.线性回归分析表明,该焊料的低周疲劳寿命满足Coffin-Manson经验关系式,由此给出了焊料在室温下的低周疲劳参数.采用扫描电镜观测和分析了焊料在疲劳前后的组织特征.  相似文献   

11.
Electrochemical migration (ECM) is a potential reliability problem in electronic soldering which might become more dangerous in lead free electronic devices. In this paper, electrochemical migration tests on Sn-Pb and lead free solder alloys were conducted under distilled water by applying constant voltages with a power supply. The susceptibility of the solder alloys to ECM and the effect of the composition on ECM behavior were studied. It is found that both Sn-Pb and lead free solders investigated in present research have susceptibility on ECM. Dendrites grow from cathode to anode and show different morphologies with the different migration elements involved. In Sn-37Pb and Sn-36Pb-2Ag solders, the main migration element is Pb. While for Sn-Ag and Sn-Ag-Cu solder alloys, Sn leads the migration. For Sn-8Zn-3Bi, both Sn and Zn can migrate. Furthermore, the effect of applied voltage on the time to short and short resistance was also investigated. As could be expected, the higher the voltage is, the shorter the failure time is. The electrochemical migration mechanism of the solder alloys was also discussed. The author is now at Fraunhofer IZM, Berlin, Germany  相似文献   

12.
In order to identify the effect on the properties and behavior of tin–zinc–bismuth (Sn-8 wt% Zn-3 wt% Bi or Sn-13.6 at.% Zn-1.6 at.% Bi) based solders produced by adding nickel (Ni) nano-particles, the interfacial microstructure between plain and composite solders with newly developed immersion silver (Ag) plated copper (Cu) substrates has been investigated as a function of reaction time, at various temperatures. For plain Sn–8Zn–3Bi solder joints, a scallop-shaped Cu–Zn–Ag intermetallic compound layer was found to adhere to the surface of the immersion Ag-plated Cu substrate. However, after addition of Ni nano-particles into the Sn–8Zn–3Bi solder, Cu–Zn–Ag (at the bottom) and (Cu, Ni)–Zn (at the top) intermetallic compound layers were observed at the interfaces. In addition, these intermetallic compound layer thicknesses increased substantially with increases in the temperature and reaction time. In the solder ball region, needle-shaped α-Zn rich phase and spherically-shaped Bi-particles appeared to be homogeneously distributed throughout a beta-tin (β-Sn) matrix. However, after the addition of Ni nano-particles, needle-shaped α-Zn rich phase appeared that exhibited a fine microstructure, due to the heterogeneous nucleation of the Ni nano-particles. The calculated activation energy for the Cu–Zn–Ag intermetallic compound layer for the plain Sn–8Zn–3Bi solder/immersion Ag-plated Cu system was 29.95 kJ/mol—while the activation energy for the total [Cu–Zn–Ag + (Cu, Ni)–Zn] intermetallic compound layers formed in the Sn–8Zn–3Bi–0.5Ni (Sn-13.6 at.% Zn-1.6 at.% Bi ~1 at.% Ni) composite solder/immersion Ag-plated Cu system was 27.95 kJ/mol. Addition of Ni nano-particles reduces the activation energy which enhanced the reaction rate as we know that lower the activation energy indicates faster the reaction rate.  相似文献   

13.
Creep and cyclic deformation behavior of two lead-free high temperature solder alloys, 95Sn-5Ag and 99Sn-1.0Cu, a high lead alloy 97.SPb-1.SAg-1.0Sn, and an Ag-modified eutectic alloy 62.SSn-36.1Pb-1.4Ag, were studied. Room temperature and high (100°C and 150°C) temperature fatigue tests (with cyclic strain amplitude up to 6.0%) for the four solders were conducted, with the fatigue lives ranging from a few cycles to more than 100,000 cycles. It is shown that among the alloys studied, 62.SSn-36.1Pb-1.4Ag (the modified Sn-Pb eutectic alloy) has the lowest fatigue resistance in term of low cycle fatigue life (strain controlled). The high lead alloy, 97.SPb-1.5Ag-1.0Sn, has the highest strain fatigue resistance in the large strain region (Δ > 2.0%). Temperature has a significant effect on alloys 95Sn-5Ag and 99Sn-1.0Cu, but has a negligible effect on the Ag modified Sn-Pb eutectic alloy 62.5Sn-36.1Pb-1.4Ag and 97.5Pb-1.5Ag-1.0Sn. Creep studies show that these alloys generally have a very significant primary creep regime (up to 20%); thus, any realistic constitutive relation has to take such a primary creep phase into consideration. Cyclic deformation of alloy 95Sn-SAg was simulated by using a constitutive relation built upon a 2-cell model, which covers both primary and secondary creep. This model provides a good estimate of the peak stresses (the minimum stress and the maximum stress in each cycle); it agrees with experimental results when the applied cyclic strain is small and/or the applied strain rate is very low.  相似文献   

14.
The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-9Zn-xNi revealed that tiny Zn and coarsened Ni 5 Zn 21 phases dispersed in the β-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-9Zn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sn4 and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn-xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution.  相似文献   

15.
在不同保温时间下,分别采用 Sn-3.0Ag-0.5Cu 和 Sn-3.0Ag-0.5Cu-3.0Bi 无铅软钎料,对表面镀镍的两种不同体积分数的 SiCP/6063Al 复合材料进行真空软钎焊。通过剪切强度测试、显微组织分析、能谱分析等手段研究了钎焊接头的组织和性能。结果表明:Bi 元素的加入改善了 Sn-3.0Ag-0.5Cu 钎料的铺展润湿性,降低了熔点,提高了焊缝的抗剪强度;在270℃保温35 min 时,Sn-3.0Ag-0.5Cu-3.0Bi 钎料钎焊接头抗剪强度达到最高值38.23 MPa;钎焊过程中只是两侧镀镍层间的焊接,钎料并未透过镍层与母材发生扩散反应。  相似文献   

16.
《材料科学技术学报》2019,35(8):1618-1628
Recently, Sn-Zn-Bi alloys have been reported to be the sheath material for miniature detonating cords, due to appropriate mechanical properties, ease of manufacturing, and low cost. Bi addition was found beneficial to the mechanical performance of Sn-Zn. However, limited information about the influence of Bi on the corrosion properties of Sn-Zn alloys has been provided. In this work, electrochemical corrosion behaviours of Sn-3Zn-xBi (x = 0, 1, 3, 5, 7 wt%) alloys were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, to explore the effects of Bi on the corrosion performance of Sn-Zn alloys. The corrosion mechanism of Sn-Zn-Bi alloys was analysed through microstructure examination on the surface of alloys after corrosion measurements. Results indicated that the addition of 1 wt% Bi increased the corrosion susceptibility of the Sn-3Zn alloy, mainly attributed to the coarsened and more uniformly distributed corrosion-vulnerable Zn-rich precipitates, while further increasing the Bi contents decreased the corrosion susceptibility of Sn-3Zn-xBi alloys due to the higher fraction of nobler Bi particles serving as anodic barriers. The Sn-3Zn-7Bi possessed the best corrosion resistance among all Sn-Zn-Bi alloys investigated. The role of Bi on corrosion was considerably discussed.  相似文献   

17.
The effect of indium (In) addition on thermal property, microstructure, wettability and interfacial reactions of Sn–8Zn–3Bi lead-free solder alloys has been investigated. Results showed that addition of In could lower both solidus and liquidus temperatures of the solder alloys with wettabilty significantly improved. The spreading area of Sn–8Zn–3Bi–1.0In was increased by 34% compared to that of Sn–8Zn–3Bi. With the increase of In content, Zn-rich precipitates were smaller in size and distributed more uniformly, which might be beneficial for mechanical properties and corrosion resistance of the solders. The intermetallic compounds (IMCs) formed between Sn–8Zn–3Bi–xIn solder/Cu substrate was identified as Cu–Zn with a scallop layer adjacent to the solder and a flat layer to the substrate. The addition of In slightly influenced the thickness of the IMCs. The newly developed Sn–Zn–Bi–In solder system has great potential to replace the Sn–Pb solders as low-temperature lead-free solders.  相似文献   

18.
The thermal shock reliability and tensile properties of a newly developed quaternary Sn-1.2Ag-0.5Cu-0.4In (wt%) solder alloy were investigated and compared to those of ternary Sn-Ag-Cu based Pb-free solder alloys. It was revealed that the Sn-1.2Ag-0.5Cu-0.4In solder alloy shows better thermal shock reliability compared to the Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu solder alloys. The quaternary alloy has higher strength than Sn-1.0Ag-0.5Cu alloy, and higher elongation than Sn-3.0Ag-0.5Cu alloy. It was also revealed that the addition of indium promotes the formation of Ag3(Sn, In) phase in the solder joint during reflow process.  相似文献   

19.
As-fabricated solders of eutectic Sn-Ag and ternary Sn-3.5 wt% Ag-1 wt% Zn alloys are coupled with metallized substrates including PtAg/Al2O3 and Cu/Al2O3 to simulate the solder joint in microelectronics. The growth mechanism of intermetallics and the mechanical properties of solder joints after thermal ageing (150 °C and 200 °C) are evaluated. In this study, a 1206 passive device/solder/metallization/Al2O3 surface mount technology (SMT) assembly is employed, and a Cu stud is attached on the ceramic substrate assembly to evaluate mechanical properties and the fracture morphology by the pull-off test. In addition, microstructure evolution of the interfacial morphology, elemental and phase distribution are probed with the aid of scanning electron microscopy (SEM), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD) techniques. There are two intermetallics (Cu3Sn and Cu6Sn5) formed at the eutectic Sn-Ag solder/Cu metallized layer interface, while only Cu6Sn5 is observed in the Sn-3.5 Ag-1Zn/Cu system. However, in the PtAg metallized substrate, only Ag3Sn is present, regardless of which solders are employed. Cu6Sn5 and Ag3Sn in the Sn-3.5 Ag-1Zn system contain 2–5 at% Zn due to the higher solubility of Zn in both Cu and Ag. The adhesion strength decreases as the time increases for all solder joint systems in the thermal ageing test. The solder joint with eutectic Sn-Ag alloy exhibits higher fracture load than that with Sn-3.5 Ag-1Zn alloy. From the fracture surface analysis, as the ageing time increases, the fracture takes place from the solderconductor interface toward the inside of the IMC (intermetallic compound). © 1998 Kluwer Academic Publishers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号