首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
In the present study, the effect of adding trace amount of rare earth (RE) on the shear strength of Sn3.8Ag0.7Cu lead-free solder joints has been investigated. The shear strength of the solder joints as-reflowed and after aging at 150 °C for 168 and 336 h was measured at a constant loading rate of 0.3 mm/min and room temperature. The investigation indicates that the shear strength of Sn3.8Ag0.7Cu0.1RE solder joints is lower than that of Sn3.8Ag0.7Cu solder joints. The shear strength of both Sn3.8Ag0.7Cu solder joints and Sn3.8Ag0.7CuRE solder joints was reduced after aging at elevated temperature. However, the shear strength reduction rate of the Sn3.8Ag0.7Cu solder joints was much faster than that of Sn3.8Ag0.7CuRE solder joints. Moreover, the fracture surfaces were examined by scanning electron microscopy (SEM) and the thickness of intermetallic compounds layer (IML) in the solder joints that join Cu substrate was measured. The results indicated that the addition of rare earth elements suppresses the growth of the thickness of intermetallic compounds layer.  相似文献   

2.
应力对Ag颗粒增强SnCu基复合钎料蠕变性能的影响   总被引:2,自引:0,他引:2  
使用搭接面积为1mm2的单搭接钎焊接头,研究了恒定温度下应力对Ag颗粒增强SnCu基复合钎料钎焊接头蠕变寿命的影响,结果表明:Ag颗粒增强SnCu基复合钎料的蠕变抗力优于99.3Sn0.7Cu基体钎料;随着应力的增大,复合钎料及其基体钎料钎焊接头的蠕变寿命均呈下降趋势,且应力对复合钎料钎焊接头蠕变寿命的影响比基体钎料明显.  相似文献   

3.
In this article, the tensile properties of low Ag lead-free solder alloys, SAC0307 and SAC105, are examined under various strain rates and temperatures. The wettability of these solders on Cu pad is also characterized by using different fluxes. The SAC305 and Sn37Pb solder alloys are also studied for comparison. Our results show that the properties of all solder alloys are dependent on the strain rate and temperature. The ultimate tensile strength increases monotonously with the increment of strain rate. Both SAC0307 and SAC105 alloys possess lower strength and higher elongation ratio than SAC305 and Sn37Pb alloys. For all the fluxes used in this study, the SAC0307 and SAC105 alloys show the similar wettability to SAC305, whereas worse than that of Sn37Pb alloy. Increasing the activity of the flux does not improve the wettability of the SAC solder alloys on Cu pad effectively.  相似文献   

4.
In order to enhance the properties of SnAgCu lead-free solders in microelectronic packaging, various contents of rare earth Yb were incorporated into the alloys. Results indicated that the addition of Yb can improve the wettability, tensile strength, thermal fatigue behavior of lead-free alloys. The lead-free solder with 0.05%Yb addition exhibited the best comprehensive properties as compared to the alloys with other Yb weight fractions. And found that after soldering, the initial interfacial IMC thickness of SnAgCuYb solder joint was smaller than that of SnAgCu solder joints, and this signified that the addition of Yb was effective in retarding the growth of the IMC layer. In addition, the Yb can refine the microstructures of SnAgCu solder, excessive Yb added can form bulk Sn–Yb phase and deteriorate the properties.  相似文献   

5.
系统研究了添加微量稀土Er对Sn3.8Ag0.7Cu钎料合金显微组织和性能的影响,通过对钎料的熔化温度、润湿性能、接头剪切强度的测试及显微组织观察,指出含微量稀土的SnAgCuEr合金是性能优良的无铅钎料合金,同时确定了最佳的Er含量范围.  相似文献   

6.
Ternary lead free solder alloys Sn–Ag–Cu were considered as the promising alternatives to conventional SnPb alloys comparing with other solders. In the present work, effects of trace amounts of rare earth Ce on the wettability, mechanical properties and microstructure of Sn–Ag–Cu solder have been investigated by means of scanning electron microscopy and energy dispersive X-ray analysis systematically. The results indicate that adding trace amount of rare earth Ce can remarkably improve the wettability, mechanical strength of Sn–Ag–Cu solder joint at different temperature, especially when the content of rare earth Ce is at about 0.03%, the tensile strength will be 110% times or more than that of the lead free solder joint without rare earth Ce addition. Moreover, it was observed that the trace amount of rare earth Ce in Sn–Ag–Cu solder may refine the joint matrix microstructure, modify the Cu6Sn5 intermetallic phase at the copper substrate/solder interface, and the intermetallic compound layer thickness was reduced significantly. In addition, since rare earth Ce possesses a higher affinity to Sn in the alloy, adding of rare earth Ce can also lead to the delayed formation and growth of the intermetallic compounds of Ag3Sn and Cu6Sn5 in the alloy.  相似文献   

7.
In recent years, the pollution of environment from lead (Pb) and Pb-containing compounds in microelectronic devices attracts more and more attentions in academia and industry, the lead-free solder alloys begin to replace the lead-based solders in packaging process of some devices and components. In this work, microstructures and mechanical properties of the lead-free solder alloy Sn99.3Cu0.7(Ni) are investigated. This paper will compare the mechanical properties of the lead-based with lead-free solder alloys (Sn99.3Cu0.7(Ni) and 63Sn37Pb). The tensile tests of lead-based and lead-free solder alloys (Sn99.3Cu0.7(Ni) and Sn63Pb37) were conducted at room and elevated temperature at constant strain rate; the relevant tensile properties of Sn99.3Cu0.7(Ni) and Sn63Pb37 were obtained. Specifically, the tensile strength of this lead-free solder- Sn99.3Cu0.7(Ni) in 25C, 50C, 75C, 100C, 125C was investigated; and it was found that tensile strength of the lead-free solder decreased with the increasing test temperature at constant strain rate, showing strong temperature dependence. The lead-free solder alloy Sn99.3Cu0.7(Ni) was found to have favorable mechanical properties and it may be able to replace the lead-based solder alloy such as Sn63Pb37 in the packaging processes in microelectronic industry.  相似文献   

8.
Sn–Zn solder alloys have been considered as one of the more attractive lead-free solders since it can easily replace Sn–Pb eutectic alloy without increasing the soldering temperature. However, there are still some problems to be resolved, such as the argument about the poor oxidation resistance and embrittlement behavior. In order to overcome these drawbacks, and further enhance the properties of Sn–Zn lead-free solder alloys, a small amount of alloying elements (rare earths, Bi, Ag, Al, Ga, In, Cr, Cu, Sb, Ni, Ge) added into Sn–Zn alloys were selected by many researchers. For example, a small amount of Al, P, Bi, Ga can improve the high-temperature oxidation resistance of Sn–Zn solders remarkably as well as Cr. This paper summarizes the effects of alloying elements on the wettability, oxidation resistance, melting behavior, mechanical properties, creep properties, microstructures and intermetallic compounds layer of Sn–Zn lead-free solders.  相似文献   

9.
Effects of Pr addition on wettability, microstructure of Sn3.8Ag0.7Cu solder were studied, the mechanical properties of solder joints were investigated and the fracture morphologies were also analyzed in this paper. The results indicate that adding appropriate amount of Pr can evidently improve the wettability of solder, and it is also found that Pr can refine the β-Sn dendrites and reduce the intermetallic compounds growth inside the solder due to the fine PrSn3 particles formed in the solder which can act as heterogeneous nucleation sites. Moreover, the joints soldered with the SnAgCuPr solders possess sound mechanical properties which may result from the finer microstructure improved by the Pr.  相似文献   

10.
Creep property of composite solders reinforced by nano-sized particles   总被引:1,自引:0,他引:1  
In the present work the creep properties of Sn37Pb and Sn0.7Cu based composite solders with nano-sized metallic Cu, Ag and nano-sized oxide Al2O3, TiO2 reinforcement particles have been studied. First, a series of volume percentages of reinforcements were selected for optimizing the content of particles. Then, the composite solder with optimum volume fraction of the reinforcement particles, corresponding to maximum creep rupture life, is selected for investigating the effect of applied stress level and test temperature on creep rupture life of the composite solder joints. In the creep rupture life test, small single-lap tensile-shear joints were adopted. The results indicate that all the composite solders have improved creep resistance, comparing to the eutectic Sn37Pb solder and the Sn0.7Cu lead-free solder. The creep rupture life of the composite solder joints is first increased with the increase in the volume fraction of reinforcement in the composite solders. Then, the creep rupture life is decreased, as the reinforcement content exceeds a certain value. The creep rupture life of the solder joints is decreased with the increase of applied stress and testing temperature. Moreover, the reinforced efficiency of nano-sized Ag particles is the best in all the tested nano-sized reinforcements for the Sn37Pb based and Sn0.7Cu based composite solders, when the particles contents are in their own optimum content.  相似文献   

11.
In this work, TiO2 nanoparticles were successfully incorporated into Sn3.5Ag and Sn3.5Ag0.7Cu solder, to synthesize novel lead-free composite solders. Effects of the TiO2 nanoparticle addition on the microstructure, melting property, microhardness, and the interfacial reactions between Sn3.5AgXCu and Cu have been investigated. Experimental results revealed that the addition of 0.5 wt.% TiO2 nanoparticles in Sn3.5AgXCu composite solders resulted in a finely dispersed submicro Ag3Sn phase. This apparently provides classical dispersion strengthening and thereby enhances the shear strength of composite solder joints. After soldering, the interfacial overall intermetallic compounds (IMC) layer of the Sn3.5AgXCu lead-free solder joint was observed to have grown more significantly than that of the Sn3.5AgXCu composite solder joints, indicating that the Sn3.5AgXCu composite solder joints had a lower diffusion coefficient. This signified that the presence of TiO2 nanoparticles was effective in retarding the growth of the overall IMC layer.  相似文献   

12.
Sn–Zn–x(Al,Ag) near-eutectic solders, namely Sn–8.3Zn–0.73Ag, Sn–8.4Zn–0.44Al and Sn–7.4Zn–0.26Al–0.68Ag (in wt%) with melting points of 200.74, 198.00 and 197.32 °C, respectively, as well as the Sn–9Zn eutectic solder, were used to join Al and Cu substrates. The addition of Ag led to the formation of dendritic AgZn3 phases, while the addition of Al obviously refined the microstructure of Sn–Zn eutectic, as well as the AgZn3 phases. The Sn–Zn–Al solder possessed the best wettability on both Cu and Al substrates among the four solders. Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layers formed at the Sn–Zn–x(Al,Ag)/Cu interfaces while Al-rich (Zn) solid solutions at the Sn–Zn–x(Al,Ag)/Al interfaces of all the as-soldered joints. The shear strength of the Al/Sn–Zn–Al/Cu solder joints was the highest among the four solder joints. The declining degree of the shear strength of the Sn–Zn–x(Al,Ag) solder joints in 3.5 % NaCl solution was in agreement with the corrosion-resistance order of the bulk solders. The Al/Sn–Zn–Ag/Cu joint thus owned the best corrosion resistance.  相似文献   

13.
The solderability, intermetallic compounds (IMC) evolution, and shear behavior of the low-Ag Sn0.7Ag0.5Cu-3.5Bi-0.05Ni (SAC0705-BiNi)/Cu solder joint was investigated by comparing with Sn0.7Ag0.5Cu (SAC0705)/Cu and Sn3.0Ag0.5Cu (SAC305)/Cu solder joints. Experimental results demonstrated that the melting temperature of Sn0.7Ag0.5Cu-BiNi solder alloy was lower than that of SAC0705 and SAC305 solder. But the melting range of Sn0.7Ag0.5Cu-BiNi was wider. Compared with the other two kinds of alloys, SAC0705-BiNi showed the best wettability. SAC0705/Cu, SAC0705-BiNi/Cu, and SAC305 solder joints appeared similar IMC morphologies and grain size at the beginning of soldering, but evolved to different appearance as the soldering process proceeded. The growth rate of the IMC grains in SAC0705-BiNi/Cu solder joint was the lowest because of the refinement of Ni. SAC0705-BiNi/Cu solder joint showed the highest shear strength before and after being aged, mainly due to the enhancement of solid solution strengthening and dispersion strengthening of Bi and Ni in the bulk solder, as well as the refinement of Ni at the soldering interface.  相似文献   

14.
时效对无铅焊料Ni-P/Cu焊点的影响   总被引:2,自引:0,他引:2  
研究了150℃等温时效为62Sn36Bp2Ag/Ni-P/Cu及共晶SnAg/Ni-P/Cu表面贴装焊点微结构及塑切强度的影响,结果表明,在钎料与Ni-P间的界面存在Ni3Sn4金属间化合物层,其厚度随时效时间增加,Ni-P层的厚度减小,时效后,SnPbAg,SnAg焊点的剪切强度下降,对于SnAg焊点,时效250h后其剪切强度剧烈下降,断裂发生在Ni-P/Cu界面上,在长时间时效后焊点一侧的Ni-P层中P的含量较主可能是Ni-P/Cu结合强度变差的主要原因,SnPbAg焊点保持着较高的剪切强度。  相似文献   

15.
Investigation of rare earth-doped BiAg high-temperature solders   总被引:1,自引:0,他引:1  
In the present work, the microstructure and properties of the rare earth Ce-doped BiAg solders with various Ag content are investigated. The results indicate that the maximum of the shear strength appears in the BiAg solder joints containing 5 and 7.5 wt.% Ag. At the same time, a similar trend appears in the hardness test of the BiAg bulk solders. Moreover, the results show that the microstructure and properties of the solders can be modified due to the unique properties of rare earth element. Small amounts of rare earth addition may enhance the wettability of SiAg solder on Cu substrate, and result in the increase of the shear strength of the solder joints. However, the rare earth addition may not give obvious influence on the melting temperature and the electrical conductivity. Thus, it is expected that the BiAg solder containing small amounts of rare earth element may possess a better potential as a replacement for high-Pb solders.  相似文献   

16.
The effect of indium (In) addition on thermal property, microstructure, wettability and interfacial reactions of Sn–8Zn–3Bi lead-free solder alloys has been investigated. Results showed that addition of In could lower both solidus and liquidus temperatures of the solder alloys with wettabilty significantly improved. The spreading area of Sn–8Zn–3Bi–1.0In was increased by 34% compared to that of Sn–8Zn–3Bi. With the increase of In content, Zn-rich precipitates were smaller in size and distributed more uniformly, which might be beneficial for mechanical properties and corrosion resistance of the solders. The intermetallic compounds (IMCs) formed between Sn–8Zn–3Bi–xIn solder/Cu substrate was identified as Cu–Zn with a scallop layer adjacent to the solder and a flat layer to the substrate. The addition of In slightly influenced the thickness of the IMCs. The newly developed Sn–Zn–Bi–In solder system has great potential to replace the Sn–Pb solders as low-temperature lead-free solders.  相似文献   

17.
Effects of rare earth Nd on solderability of the Sn3.8Ag0.7Cu alloy were studied by wetting balance method, and the mechanical properties (such as pull-force and shear-force) of the joints soldered with SnAgCu–XNd solders were determined using STR-1000 joint strength tester. Moreover, the microstructures of SnAgCu–XNd solders bearing different amount of Nd as well as the intermetallic compounds (IMCs) formed at solder/Cu interface during soldering have been investigated using optical microscopy, scanning electron microscopy and energy dispersive X-ray analysis, respectively. The results indicate that trace amount of Nd addition can remarkably improve the solderability and mechanical properties of SnAgCu solder. At the same time, it is found that rare earth Nd in SnAgCu solder could refine and improve microstructure of the solder, some bigger IMC plates in SnAgCu solder were replaced by fine granular IMCs. Moreover, the thickness of the intermetallic layer at the Cu/solder interface was reduced significantly. In summary, we suggest that the most suitable content of rare earth Nd is about 0.05 wt% and it will be inadvisable when the Nd exceeds 0.25 wt%.  相似文献   

18.
In the process of electronic packaging, such as flip chip technology, under bump metallization (UBM) can be consumed gradually by solder during soldering. Then dissolution of Ni, Au and Cu from UBM into the solder may change the original solder to a multicomponent one especially under the trend of miniaturization. It is quite necessary to evaluate the properties of the multicomponent solders that have new composition after soldering. In this study, the microstructure, thermal and mechanical properties of five types of multicomponent lead-free solders, i.e. Sn–2Cu–0.5Ni, Sn–2Cu–0.5Ni–0.5Au, Sn–3.5Ag–0.5Ni, Sn–3.5Ag–1Cu–0.5Ni and Sn–3.5Ag–2Cu–0.5Ni (all in wt% unless specified otherwise) were investigated. Comparison with eutectic Sn–0.7Cu, Sn–3.5Ag and Sn–3.5Ag–0.7Cu solders was made. There was no obvious difference of the melting point between the multicomponent lead-free solders and the eutectic ones. For Sn–2Cu–0.5Ni solder, Cu6Sn5 and (Cu,Ni)6Sn5 intermetallic compounds (IMCs) formed. In the case of Sn–2Cu–0.5Ni–0.5Au, besides (Cu,Ni)6Sn5, (Cu,Au)6Sn5 and (Cu,Ni,Au)6Sn5 were also observed. The IMCs formed in Sn–3.5Ag–0.5Ni solder were Ag3Sn and Ni3Sn4. In both Sn–3.5Ag–1Cu–0.5Ni and Sn–3.5Ag–2Cu–0.5Ni solders, Ag3Sn and (Cu,Ni)6Sn5 were detected. The mechanism for the formation of the IMCs was discussed. Tensile test was also conducted. The fractography indicated that all of the multicomponent lead-free solders exhibited a ductile rupture.  相似文献   

19.
The microelectronic applications of lead-free solders pose ever-increasing demands. We seek to improve the solder by forming composites with Ag-coated single-walled carbon nanotubes (Ag-coated SWCNTs). These were incorporated into 96.5Sn–3.0Ag–0.5Cu solder alloy with an ultrasonic mixing technique. Composite solder pastes with 0.01–0.10 wt% nanotube reinforcement were prepared. The wettability, melting temperature, microstructure and mechanical properties of the composite solders were determined, and their dependency on nanotube loading assessed. Loading with 0.01 wt% Ag-coated SWCNTs improved the composite solder’s wetting properties, and the contact angle was reduced by 45.5 %, while over loading of the coated nanotubes up to 0.10 wt% degraded the wettability. DSC results showed only slight effects on the melting behavior of the composite solders. Cross-section microstructure analysis of the spreading specimens revealed uniform distribution of the intermetallic compounds throughout the solder matrix, and EDS analysis identified the phases as β-Sn, Ag3Sn and Cu6Sn5. The mechanical properties of composite specimens, compared with those of unloaded 96.5Sn–3.0Ag–0.5Cu solder, had a maximal improvement in the shear strength of 11 % when the nanotube loading was 0.01 wt% of Ag-coated SWCNTs.  相似文献   

20.
This study was concerned with the drop performance between the Sn37Pb and the Sn3.8Ag0.7Cu (wt. %) solder joints when the specimens were subjected to drop test after soldering process. The U-notch butt-jointed specimen was adopted and a lab-designed drop tester was employed. Meanwhile, the electrical resistance values of two kinds of solder joints were measured and recorded after certain drop tests, and finally drop number versus resistance curves were plotted and compared. From the resistance variation with the drop number, it was observed that the Sn37Pb joints presented significantly higher drop performance than the Sn3.8Ag0.7Cu ones. For the Sn3.8Ag0.7Cu specimens, the average drop number before failure was approximately 15-18 and then the resistance values sharply increased. However, the average drop number of the Sn37Pb joints was over 110 and the increasing rate of the electrical resistance was smooth, which is consistent with the results of the board-level drop test. Moreover, one specimen of each kind was picked out and the microstructural observation was carried out to investigate the joint deformation behavior in the dynamic load. It was obvious that the plastic deformation capacity of the Sn37Pb joints was remarkably higher than the one of the Sn3.8Ag0.7Cu joints, proving that most of SnAgCu-based solders presented low deformation compatibility and low energy absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号