首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Si  Yanan  He  Xiang  Jiang  Jie  Duan  Zhiming  Wang  Wenjing  Yuan  Daqiang 《Nano Research》2021,14(2):518-525

A three-dimensional copper metal—organic framework with the rare chabazite (CHA) topology namely FJI-Y11 has been constructed with flexibly carboxylic ligand 5,5′-[(1,4-phenylenebis(methylene))bis(oxy)]diisophthalic acid (H4L). FJI-Y11 exhibits high water stability with the pH range from 2 to 12 at temperature as high as 373 K. Importantly, FJI-Y11 also shows high efficiency of hydrogen isotope separation using dynamic column breakthrough experiments under atmospheric pressure at 77 K. Attributed to its excellent structural stability, FJI-Y11 possesses good regenerated performance and maintains high separation efficiency after three cycles of breakthrough experiments.

  相似文献   

2.
Li  Yan  Wang  Xiaoyan  Xue  Weinan  Wang  Wei  Zhu  Wei  Zhao  Lianjing 《Nano Research》2019,12(4):785-789

All-inorganic cesium lead halide perovskite quantum dots (QDs) have been a promising candidate for optoelectronic devices in recent years, such as light-emitting diodes, photodetectors and solar cells, owing to their superb optoelectronic properties. Still, the stability issue of nanocrystals is a bottleneck for their practical application. Herein, we report a facile method for the synthesis of a series of phosphine ligand modified CsPbBr3 QDs with high PL intensity. By introducing organic phosphine ligands, the tolerance of CsPbBr3 QDs to ethanol, water and UV light was dramatically improved. Moreover, the phosphine ligand modified QD films deposited on the glass subtracts exhibit superior PL intensity and optical stability to those of pristine QD based films.

  相似文献   

3.
Xin  Qi  Jia  Xinrui  Nawaz  Asmat  Xie  Wenjing  Li  Litao  Gong  Jian Ru 《Nano Research》2020,13(5):1427-1433

The development of high-efficiency peroxidase mimetics is highly desirable in view of high cost and low stability of natural enzymes. From the perspective of mimicking active site microenvironment at low cost, we herein report a novel histidine-functionalized graphene quantum dot (His-GQD)/hemin complex, which exhibits the highest catalytic rate for the peroxidase-based chromogenic reaction among the hemin-containing mimetics reported so far. Also, our peroxidase mimetic shows excellent tolerance to strongly acidic conditions and can function in a wide temperature range. Lineweaver-Burk plots and comprehensive electron paramagnetic resonance analysis reveal a ping-pong type catalytic mechanism for this mimetic. In addition, His-GQD/hemin demonstrates high efficiency and accuracy in detecting H2O2 and blood glucose. Our work provides an effective design of artificial enzymes for practical applications.

  相似文献   

4.
Eshon  Sehrina  Zhang  Weike  Saunders  Martin  Zhang  Yujun  Chua  Hui Tong  Gordon  Jeffrey M. 《Nano Research》2019,12(3):557-562

A diverse range of remarkable boron nitride (BN) nanostructures subsuming nano-horns, nano-rods, nano-platelets, and clusters of hollow nanospheres (nano-onions, arguably of greatest applied and fundamental interest) have been produced exclusively from crystalline BN precursor powder via lamp ablation. The procedure is safe, devoid of toxic reagents, simple, rapid and scalable—generating some genres of nanoparticles that had previously proved elusive. Product structure and composition were unambiguously assessed by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy.

  相似文献   

5.
Although tremendous efforts have been paid on electrocatalysts toward efficient electrochemical hydrogen generation,breakthrough is still highly needed in the design and synthesis of wonderful non-precious-metal electrocatalyst.Herein,a nanovilli Ni2P electrode,which with superaerophobic and superhydropholic can significantly facilitate the mass and electron transfer was constructed via a facial morphology control strategy.Meanwhile,the substitution of sluggish oxygen evolution with urea oxidation,lowering the two-electrode cell voltage to only 1.48 volts to achieve a current density of 10 mA·cm-2.Thus,the as-constructed electrode achieves the operation of hydrogen generation by an AA battery.This work sheds new light on the exploration of other high-efficient electrocatalysts for hydrogen generation by using intermittent clean energy.  相似文献   

6.
Zhu  Shaohua  Chen  Cheng  He  Pan  Tan  Shuangshuang  Xiong  Fangyu  Liu  Ziang  Peng  Zhuo  An  Qinyou  Mai  Liqiang 《Nano Research》2019,12(6):1371-1374

In this work, homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect. It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs). Impressively, the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1,575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2,000 mA/g) as anode material for LIBs. This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.

  相似文献   

7.
Blinking fluorophore perovskite nanocrystals (NCs) were employed to image the fine structure of the polystyrene (PS) electrospun fibers. The conditions of CsPbBr3 NCs embedded and dispersed into PS were investigated and optimized. The stochastic optical reconstruction microscopy is employed to visualize the fine structure of the resulted CsPbBr3@PS electrospun fibers at sub-diffraction limit. The determined resolution in the reconstructed nanoscopic image is around 25.5 nm, which is much narrower than that of conventional fluorescence image. The complex reticulation and multicompartment in bead sub-diffraction-limited structures of CsPbBr3@PS electrospun fibers were successfully mapped with the help of the stochastic blinking properties of CsPbBr3 NCs. This work demonstrated the potential applications of CsPbBr3 perovskite NCs in super-resolution fluorescence imaging to reconstruct the sub-diffraction-limited features of polymeric material.  相似文献   

8.
Peng  Xuan  Geng  Yanfang  Zhang  Min  Cheng  Faliang  Cheng  Linxiu  Deng  Ke  Zeng  Qingdao 《Nano Research》2019,12(3):537-542

Here, the structural transformations of H4ETTC induced by coronene (COR) and selective adsorption behaviors of COR in different templates were investigated by scanning tunnelling microscope (STM). It was discovered that the assembled architecture of H4ETTC at the HOPG/ heptanoic acid interface depended on the concentration of COR, and the clusters of COR were obtained in the kagomé nanoporous network of H4ETTC molecules at a high concentration of COR solution. In addition, COR clusters can also be formed in the hexagonal porous structure of hexaphenylbenzene (HPB) molecules modified by alkyl chains at the HOPG/heptanoic acid interface. When both H4ETTC and HPB assembly structures, based on hydrogen bonding and van der Waals force respectively, were selected as the host templates, COR showed selectivity for HPB template to form HPB/COR hexagonal host–guest architecture. Density functional theory (DFT) calculations were also performed to disclose the mechanisms involved.

  相似文献   

9.

Oligo(p-phenyleneethynylene)s (OPEs) end-capped with (alkynyl)bis(diphosphine)ruthenium and thiol/thiolate groups stabilize ca. 2 nm diameter gold nanoparticles (AuNPs). The morphology, elemental composition and stability of the resultant organometallic OPE/AuNP hybrid materials have been defined using a combination of molecular- and nano-material chacterization techniques. The hybrids display long-term stability in solution (more than a month), good solubility in organic solvents, reversible ruthenium-centered oxidation, and transparency beyond 800 nm, and possess very strong nonlinear absorption activity at the first biological window, and unprecedented two-photon absorption activity in the second biological window (σ2 up to 38,000 GM at 1,050 nm).

  相似文献   

10.
Du  Yanqiu  Jiang  Cheng  Song  Li  Gao  Bin  Gong  Hao  Xia  Wei  Sheng  Lei  Wang  Tao  He  Jianping 《Nano Research》2020,13(10):2784-2790

Realizing the reduction of N2 to NH3 at low temperature and pressure is always the unremitting pursuit of scientists and then electrochemical nitrogen reduction reaction offers an intriguing alternative. Here, we develop a feasible way, gamma irradiation, for constructing defective structure on the surface of WO3 nanosheets, which is clearly observed at the atomic scale by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The abundant oxygen vacancies ensure WO3 nanosheets with a Faradaic efficiency of 23% at −0.3 V vs. RHE. Moreover, we start from the regulation of the surface state to suppress proton availability towards hydrogen evolution reaction (HER) on the active site and thus boost the selectivity of nitrogen reduction.

  相似文献   

11.
Xu  Shi-Long  Shen  Shan-Cheng  Wei  Ze-Yue  Zhao  Shuai  Zuo  Lu-Jie  Chen  Ming-Xi  Wang  Lei  Ding  Yan-Wei  Chen  Ping  Chu  Sheng-Qi  Lin  Yue  Qian  Kun  Liang  Hai-Wei 《Nano Research》2020,13(10):2735-2740

Small-sized bimetallic nanoparticles that possess numerous accessible metal sites and optimal geometric/electronic structures show great promise for advanced synergetic catalysis but remain synthetic challenge so far. Here, an universial synthetic method is developed for building a library of bimetallic nanoparticles on mesoporous sulfur-doped carbon supports, consisting of 24 combinations of 3 noble metals (that is, Pt, Rh, Ir) and 7 other metals, with average particle sizes ranging from 0.7 to 1.4 nm. The synthetic strategy is based on the strong metal-support interaction arising from the metal-sulfur bonding, which suppresses the metal aggregation during the H2-reduction at 700 °C and ensure the formation of small-sized and alloyed bimetallic nanoparticles. The enhanced catalytic properties of the ultrasmall bimetallic nanoparticles are demonstrated in the dehydrogenation of propane at high temperature and oxidative dehydrogenations of N-heterocycles.

  相似文献   

12.
Chen  Chunhong  Xie  Lei  Wang  Yong 《Nano Research》2019,12(6):1267-1278

Colloidal nanoparticles with anisotropic architectures have attracted a variety of interest and attention due to different physical and chemical properties compared with the isotropic counterparts, making them promising candidates in many fundamental studies and practical applications. Particularly, carbon and silica-based anisotropic nanoparticles can be one stand out by combing both intrinsic merits of carbons and silica, such as structural stability, biocompatibility, large surface area, and ease of functionalization with the anisotropic structural complexity. In this review, we aim to provide an updated summary of the research related to the anisotropic carbon and silica-based nanostructures, covering both their synthesis and applications.

  相似文献   

13.
Zhang  Na  Lin  Jingjing  Zhang  Shuqing  Zhang  Shishu  Li  Xiaobo  Liu  Dongyan  Xu  Hua  Zhang  Jin  Tong  Lianming 《Nano Research》2019,12(3):563-568

Anisotropic two-dimensional (2D) materials exhibit lattice-orientation dependent optical and electrical properties. Carriers doping of such materials has been used to modulate their energy band structures for opto-electronic applications. Herein, we show that by stacking monolayer rhenium disulfide (ReS2) on a flat gold film, the electrons doping in ReS2 can affect the in-plane anisotropic Raman enhancement of molecules adsorbed on ReS2. The change of enhancement factor and the degree of anisotropy in enhancement with layer number are sensitively dependent on the doping level of ReS2 by gold, which is further confirmed by Kelvin probe force microscopy (KPFM) measurements. These findings could open an avenue for probing anisotropic electronic interactions between molecules and 2D materials with low symmetry using Raman enhancement effect.

  相似文献   

14.
Kenney  Michael J.  Huang  Jianan Erick  Zhu  Yong  Meng  Yongtao  Xu  Mingquan  Zhu  Guanzhou  Hung  Wei-Hsuan  Kuang  Yun  Lin  Mengchang  Sun  Xiaoming  Zhou  Wu  Dai  Hongjie 《Nano Research》2019,12(6):1431-1435

Neutral water splitting is attractive for its use of non-corrosive and environmentally friendly electrolytes. However, catalyst development for hydrogen and oxygen evolution remains a challenge under neutral conditions. Here we report a simple electrodeposition and reductive annealing procedure to produce a highly active Ni-Co-Cr metal/metal oxide heterostructured catalyst directly on Ni foam. The resulting electrocatalyst for hydrogen evolution reaction (HER) requires only 198 mV of overpotential to reach 100 mA/cm2 in 1 M potassium phosphate (pH = 7.4) and can operate for at least two days without significant performance decay. Scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) imaging reveals a Ni-Co alloy core decorated with blended oxides layers of NiO, CoO and Cr2O3. The metal/metal oxide interfaces are suggested to be responsible for the high HER activity.

  相似文献   

15.
Acute kidney injury(AKI),has become the focus of increasing attention due to its high risk of death.The early diagnosis and treatment of AKI significantly reduce the risk of renal tissue damage and kidney dysfunction.However,the efficient early diagnosis and treatment approach for AKI remains a challenge.AKI screening via precise nanomaterial theranostics is a new alternative approach.This study summarizes the recent advances in functional nanomaterials in the early detection and treatment of AKI.The challenges and problems in the use of nanomaterials for AKI in clinical applications are also discussed.It is anticipated that highlighting these new advances will lay the foundation for further translational research on the promising application of nanomaterials for AKI.  相似文献   

16.
Fang  Zhiwei  Xing  Qiyu  Fernandez  Desiree  Zhang  Xiao  Yu  Guihua 《Nano Research》2020,13(5):1179-1190

Two-dimensional (2D) nanomaterials have attracted a great deal of attention since the discovery of graphene in 2004, due to their intriguing physicochemical properties and wide-ranging applications in catalysis, energy-related devices, electronics and optoelectronics. To maximize the potential of 2D nanomaterials for their technological applications, controlled assembly of 2D nanobulding blocks into integrated systems is critically needed. This mini review summarizes the reported strategies of 2D materials-based assembly into integrated functional nanostructures, from in-situ assembly method to post-synthesis assembly. The applications of 2D assembled integrated structures are also covered, especially in the areas of energy, electronics and sensing, and we conclude with discussion on the remaining challenges and potential directions in this emerging field.

  相似文献   

17.
Wang  Tian-Jiao  Liu  Xiaoyang  Li  Ying  Li  Fumin  Deng  Ziwei  Chen  Yu 《Nano Research》2020,13(1):79-85

Electrochemical water splitting (EWS) is a highly clean and efficient method for high-purity hydrogen production. Unfortunately, EWS suffers from the sluggish and complex oxygen evolution reaction (OER) kinetics at anode. At present, the efficient, stable, and low-cost non-precious metal based OER electrocatalyst is still a great and long-term challenge for the future industrial application of EWS technology. Herein, we develop a simple and fast approach for gram-scale synthesis of flower-like cobalt-based layered double hydroxides nanosheet aggregates by ultrasonic synthesis, which show outstanding electrocatalytic performance for the oxygen evolution reaction in alkaline media, such as preeminent stability, small overpotential of 300 mV at 10 mA·cm−2 and small Tafel slope of 110 mV·dec−1.

  相似文献   

18.
Despite the unique properties of bismuth(Bi),there is a lack of two-dimensional(2D)heterostructures between Bi and other functional 2D materials.Here,a coherent strategy is reported to simultaneously synthesize rhombohedral phase Bi nanoflakes and bismuth oxychloride(BiOCI)nanosheets.The delicate balance between several reactions is mediated mainly for the reduction and chlorination in the chemical vapor transport(CVT)process.The Bi-BiOCI lateral heterostructures have been constructed via the coalescence of the two different 2D nanostructures.The characteristics of ambipolar conducting Bi and insulator-like BiOCI are elaborated by scanning microwave impedance microscopy(sMIM).This work demonstrates a way to construct a 2D Bi nanostructure in junction with its oxyhalide.  相似文献   

19.
In this paper,a dual-ligand design strategy is demonstrated to modulate the performance of the electronically conductive metalorganic frameworks(EC-MOFs)thin film with a spray layer-by-layer assembly method.The thin film not only can be precisely prepared in nanometer scale(20-70 nm),but also shows the pin-hole-free smooth surface.The high quality nano-film of 2,3,6,7,10,11-hexaiminotriphenylene(HITP)doped Cu-HHTP enables the precise modulation of the chemiresistive sensitivity and selectivity.Selectivity improvement over 220%were realized for benzene vs.NH3>as well as enhanced response and recovery properties.In addition,the selectivity of the EC-MOF thin film sensors toward other gases(e.g.triethylamine,methane,ethylbenzene,hydrogen,butanone,and acetone)vs.NH3 at room temperature is also discussed.  相似文献   

20.
Ren  Yumei  Yu  Chengbing  Chen  Zhonghui  Xu  Yuxi 《Nano Research》2021,14(6):2023-2036

As a promising graphene analogue, two-dimensional (2D) polymer nanosheets with unique 2D features, diversified topological structures and as well as tunable electronic properties, have received extensive attention in recent years. Here in this review, we summarized the recent research progress in the preparation methods of 2D polymer nanosheets, mainly including interfacial polymerization and solution polymerization. We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications, such as batteries, supercapacitors, electrocatalysis and photocatalysis. Finally, on the basis of their current development, we put forward the existing challenges and some personal perspectives.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号