首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High tunneling magnetoresistance (TMR) ratio and low RA in magnetic tunnel junctions are necessary condition for application in magnetic random access memory. To get high TMR ratio and low RA, good quality of MgO (002) insulating layer is important. To increase crystalline quality of MgO (002) layer, we applied negative bias on the substrate during MgO deposition. We report the results of the tunneling magnetoresistance (TMR) ratio and the resistance-area product (RA) for CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) with substrate bias voltage, and showed TMR increase and RA decrease with substrate bias. The effects of substrate bias voltage on the TMR ratio, RA and MgO (002) peak intensity are discussed.   相似文献   

2.
We have investigated the effect of Ar pressure during MgO sputtering on the tunnel magnetoresistance (TMR) and resistance area (RA) product of CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs). The TMR of MTJs with a thin MgO tunnel barrier deposited at different Ar pressures (1.3, 4, 10, and 25 mTorr) shows a consistent relationship with x-ray diffraction (XRD) properties of thick MgO films deposited with the same conditions. The deposition of the MgO-barrier at 1.3 mTorr results in a low TMR ratio and a high RA product due to the disordered MgO barrier and the oxidation of the bottom electrode of the MTJ, while the deposition at 25 mTorr results in a rough MgO barrier, and thereby gives rise to a large shift of switching field of the free layer due to the orange-peel coupling.   相似文献   

3.
Two different buffer layers (Ta/Ru/Ta and thick Ta) were tested for MgO MTJs. The influence of buffer layer texture on the crystallization of CoFeB bottom and top electrodes and on the tunnel magnetoresistance effect was investigated. X-ray results suggest that, after anneal, the CoFeB layer above MgO is well (200) textured and it does not depend on the buffer layer since MgO (100) barrier supplies a good template for CoFeB (200) orientation, while the crystallization of bottom CoFeB layer relies on the buffer layer texture. Different from Ta (110) found in Ta/Ru/Ta buffer layer, a thick Ta buffer layer has beta-(200) texture, which induces (001) oriented grains in MnPt layer. Because of the epitaxy relationship between MnPt and FeCo with MnPt(001)[100]//FeCo(200)[110], MnPt (001) oriented grains lead to the crystallization of bottom CoFeB layer with (200) orientation. As a result, higher TMR ratio up to 290% was achieved in the EB-MTJs with thick Ta buffer layer.  相似文献   

4.
We report on the magneto-transport measurements of MgO magnetic tunnel junctions (MTJs) composed of NiFeSiB/CoFeB as the free layer for two different structures (top-type and bottom-type pinning). The magneto-transport properties of these MTJs were investigated by varying the thickness of the amorphous NiFeSiB layer for a fixed CoFeB thickness. The tunnel magnetoresistance (TMR), measured in both type of structures, exhibit the same or a higher amplitude (up to 230% measured at room temperature in the case of top-type device), comparing to the case of a single CoFeB free layer. These results suggest that hybrids free layers can be used as good candidates for MTJs with reduced saturation magnetization while keeping a high TMR ratio.   相似文献   

5.
采用多步骤固态烧结方法合成了具有单一Co2P相的Co0.525Fe0.475MnP化合物,其反铁磁有序温度在室温附近。在升温过程中,这种化合物经历两个连续的磁转变:在285 K发生反铁磁到铁磁的一级相变,在375 K发生由铁磁到顺磁的二级相变。在0~5 T的外磁场中,两个相变点温度对应的最大磁熵变分别为1.1 J/(kg·K)(303 K)和-2.0 J/(kg·K)(383 K)。外磁场为零时,随着温度的降低电阻率曲线在铁磁到反铁磁转变温度附近出现极小值,是铁磁有序与反铁磁有序的竞争所致。在35 K再次出现的电阻率极小值,可归因于由Fe替代Co引起的自旋无序所导致的金属-绝缘体转变。在5 T磁场中磁电阻率的最大值对应温度为200 K时的-2.5%,在反铁磁温度以上磁电阻率迅速减小。这表明,这种化合物的磁电阻效应源于外磁场对反铁磁有序的影响。  相似文献   

6.
Magnetically engineered magnetic tunnel junctions (MTJs) show promise as non-volatile storage cells in high-performance solid-state magnetic random access memories (MRAM). The performance of these devices is currently limited by the modest (< approximately 70%) room-temperature tunnelling magnetoresistance (TMR) of technologically relevant MTJs. Much higher TMR values have been theoretically predicted for perfectly ordered (100) oriented single-crystalline Fe/MgO/Fe MTJs. Here we show that sputter-deposited polycrystalline MTJs grown on an amorphous underlayer, but with highly oriented (100) MgO tunnel barriers and CoFe electrodes, exhibit TMR values of up to approximately 220% at room temperature and approximately 300% at low temperatures. Consistent with these high TMR values, superconducting tunnelling spectroscopy experiments indicate that the tunnelling current has a very high spin polarization of approximately 85%, which rivals that previously observed only using half-metallic ferromagnets. Such high values of spin polarization and TMR in readily manufactureable and highly thermally stable devices (up to 400 degrees C) will accelerate the development of new families of spintronic devices.  相似文献   

7.
Thin-film structures composed of nearly nonmagnetostrictive single-layer Co76Fe4B20 or magnetostrictive Fe80B20 and Co75Si15B10 amorphous layers have been deposited on bowed glass substrates using the RF-sputtering technique. The fabrication procedure induces a postdeposition compressive stress in the thin-film structure when the sample is retrieved from an arching device in the sputtering chamber. This results in an induced magneto-elastic anisotropy that governs the magnetic easy axis of the film, depending on the sign of the magnetostriction constant of each layer. Particular attention is paid here to heterogeneous structures made of bi- or multilayers with magnetic easy axis oriented in a different direction in each layer. Bulk magnetic properties were evaluated from hysteresis loops and thermomagnetization measured by vibrating sample magnetometry (VSM) and quantum interference device (SQUID) magnetometry. Magnetic domain walls and out-of-plane magnetized domains were observed by a Kerr imaging system and magnetic force microscopy. The combination of microstructure and strains induced in the layers determines the orientation of the observed magnetic anisotropies, which vary from high in-plane anisotropies up to out-of-plane orientations for selected films. The results, which provide reassurance that effective anisotropies are induced in each of the layers, are discussed in terms of the interactions between magnetic phases with different induced easy magnetization axes  相似文献   

8.
J. Kanak  T. Stobiecki  J. Schmalhorst 《Vacuum》2008,82(10):1057-1061
Two types of magnetic tunnel junctions (MTJs) with the configuration: substrate Si(1 0 0)/SiO2 47 nm/buffer/IrMn 12 nm/CoFe 2.5 nm/Al-O 1.5 nm/NiFe 3 nm/Ta 5 nm and Si(1 0 0)/SiO2 47 nm/buffer/IrMn 10 nm/CoFeB 3 nm/MgO 2 nm/CoFeB 4 nm/Ta 5 nm were prepared by the sputtering technique with two different buffers: A-Cu 25 nm and B-Ta 5 nm/Cu 25 nm. The B buffer caused a high texture of MTJs whereas in the case of the A buffer junctions texture was weak. Crystallites in the textured layers grew in a columnar like shape that induced interfacial roughness. High textured buffer B caused high interfacial roughness that reduced the resistance-area (RA) product due to a barrier thickness fluctuation. RA also changed substantially depending on the type of a barrier. The highest RA product ∼15 MΩ μm2 was achieved for a low textured junction with Al-O barrier whereas in the high textured MgO sample RA product was ∼100 kΩ μm2. Tunnel magnetoresistance (TMR) measured at room temperature was about 45% for the samples with Al-O barrier, whereas for the samples with MgO barrier TMR was about three times higher and achieved 140%.  相似文献   

9.
The high-frequency characteristics of the RF integrated inductors with antiferromagnetic/ferromagnetic (AF/F) multilayers (MLs) are studied. Each AF layer is 8-nm IrMn and F is Co50Fe50 with a 200-nm splitting into N = 1 to 5 repeats of MLs. This exchange coupled {IrMn/CoFe(d nm)}N MLs are deposited on top of the two-port inductors with five-turn square spiral coils, a dimension of 100 mum times 100 mum and line/space of 5 mum/2 mum. The inductor surface and magnetic layer is separated by 1-mum-thick SiO2. The enhancement of inductance (DeltaL) is 20% compared to an air-core of the same coil size. The resonance peak gradually shifted to a higher frequency with increasing N, and reached at a maximum of 4.3 GHz when N = 5. This is in good agreement with our magnetic data which revealed that the anisotropy field (Hk) and ferromagnetic resonance frequency (fFMR) of {IrMn/CoFe(d nm)}N MLs are increased with increasing N. The quality factor, Q is improved by 6.8% at 1.5 GHz for the {IrMn/CoFe(40 nm)}N=5 integrated inductors compared to air-core inductors.  相似文献   

10.
以天然鳞片石墨为原料制备氧化石墨(GO), 应用水热法制备钴锌铁氧体(Co0.5Zn0.5Fe2O4), 并将两者制备成石墨烯(rGO)/Co0.5Zn0.5Fe2O4复合材料。采用X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FT-IR)研究rGO/Co0.5Zn0.5Fe2O4的结构; 应用透射电子显微镜(TEM)和矢量网络分析仪(VNA)研究不同复合比例对rGO/Co0.5Zn0.5Fe2O4复合材料形貌、电磁损耗特性、德拜弛豫模型及电磁响应行为的影响。结果表明: 复合反应后的GO在XRD图谱中主衍射峰由2θ=9.74°变化为2θ=24.15°, 且红外光谱图中显示含氧官能团消失, 均说明GO成功还原为rGO。透射电子显微镜图中可以看到Co0.5Zn0.5Fe2O4嵌布在rGO上。复合反应过程中, 当钴锌铁氧体的含量增大, 分散性逐渐减弱。Co0.5Zn0.5Fe2O4与GO质量比为2 : 1时制备的rGO/Co0.5Zn0.5Fe2O4复合材料的吸波性能最佳, 在15.11 GHz处反射率达到最小值-36.89 dB, 有效吸波频带宽为3.74。  相似文献   

11.
The reactive diffusion between Au and Sn was experimentally studied at solid-state temperatures using Sn/Au/Sn diffusion couples prepared by a diffusion bonding technique. The diffusion couples were annealed at temperatures of T = 393 and 473 K for various times in an oil bath with silicone oil. After annealing, compound layers composed of AuSn4, AuSn2 and AuSn were recognized to form at the Au/Sn interface. The thickness of the AuSn4 layer is about six and four times greater than those of the AuSn2 and AuSn layers at T = 393 and 473 K, respectively. The ratio of the thicknesses of the compound layers is kept constant independently of the annealing time. The total thickness l of the compound layers is described as a function of the annealing time t by the equation l = k(t/t0)n, where t0 is unit time, 1 s. The exponent n is nearly equal to 1/2 at T = 393 K but takes a value between 1/4 and 1/2 at T = 473 K. Such an intermediate value of n at T = 473 K indicates that the grain boundary diffusion contributes to the reactive diffusion and the grain growth occurs at certain rates. As the annealing temperature decreases, the contribution of the grain boundary diffusion should become more remarkable, but the grain growth will slow down. Consequently, n becomes close to 1/2 at T = 393 K. According to the constancy of the ratio of the thicknesses, it is concluded that the same rate-controlling process works in the AuSn4, AuSn2 and AuSn layers at a constant annealing temperature.  相似文献   

12.
Single barrier magnetic-tunnel-junctions (MTJs) with the layer structure of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22Mn78(12)/Co60Fe20B20(4)/Al(0.8)-oxide/Co60Fe20B20(4)/Cu(30)/Ta(5) [thickness unit: nm] using the amorphous Co60Fe20B20 alloy as free and pinned layers were micro-fabricated. The experimental investigations showed that the tunnel magnetoresistance (TMR) ratio and the resistance decrease with increasing dc bias voltage from 0 to 500~mV or with increasing temperature from 4.2 K to RT. A high TMR ratio of 86.2% at 4.2 K, which corresponds to the high spin polarization of Co60Fe20B20 55%, was observed in the MTJs after annealing at 270℃ for 1 h. High TMR ratio of 53.1%, low junction resistance-area product RS of 3.56 kΩμm2, small coercivity Hc of ≤4 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 of greater than 570 mV at RT have been achieved in such Co-Fe-B MTJs.  相似文献   

13.
Influence of boron concentration in CoFeB on the transport properties of CoFeB (B 20% and B 16%)/MgO/CoFeB magnetic tunnel junction (MTJ) was investigated. Boron distribution was studied by using X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscope was utilized for analysis of the texture and interface quality. The MTJ with the boron diluted CoFeB (B 16%) pinned layer shows 10% higher MR than the CoFeB (B 20%). HRTEM shows that the MgO/CoFeB interface for the sample with diluted CoFeB layer has a better epitaxial MgO/CoFeB growth. Higher boron concentration in the as-deposited CoFeB stays high after annealing but boron content in the MgO increases as well. These results suggest that that MR improvement is directly related to the distribution of the boron in CoFeB/MgO/CoFeB MTJs after annealing.  相似文献   

14.
Effects of the heat treatment conditions of the disproportionation stage on magnetic properties of hydrogenation disproportionation desorption recombination (HDDR) Pr13Fe80B7 material are investigated. The results show that the HDDR Pr13Fe80B7 material disproportionated by heating from room temperature under hydrogen (C-HD), has high coercivities and low remanences while that heated up to 800degC under vacuum, and then disproprotionated by exposing to hydrogen (V-HD), show high remanences with low coercivities. Further investigations show that this difference of magnetic properties of HDDR Pr13Fe80 B7 materials, which is caused by the C-HD and V-HD treatment, might be related to the disproportionation at low temperature (650degC) in the C-HD treatment. At the same time, it is also found that the microstructure of the Pr13Fe80B7 alloys disproportionated by C-HD treatment is mainly spherical while that of the alloys disproportionated by V-HD treatment is mainly rod-like  相似文献   

15.
Annealing of the (1.1 nm Co90Fe10/2.2 nm Cu)×20 and (1.1 nm Co90Fe10/2.2 nm Cu85Ag10Au5)×20 multilayers at 235 °C improved their magnetoresistance as compared to the virgin samples. Annealing at higher temperatures resulted in degradation of the magnetoresistance effect. This observation raised the motivation of a detailed structural study using small-angle X-ray scattering, wide-angle X-ray diffraction, electron diffraction and transmission electron microscopy with the aim to link the structural changes in the system to the changes in the magnetoresistance. The structure studies have shown that the maximum of the magnetoresistance observed after annealing at 235 °C is related to the separation of Co90Fe10 and Cu, which are partly intermixed at interfaces after the deposition process. The decay of the GMR effect at higher annealing temperatures is caused by an increase of the interface roughness, which led in the Co90Fe10/Cu multilayers to occurrence of non-continuous interfaces and to short-circuiting of magnetic layers. In the Cu85Ag10Au5 multilayers, the combination of small-angle X-ray scattering and wide-angle X-ray diffraction has shown that Cu85Ag10Au5 did not form an alloy with the nominal composition: Only a part of Au and Ag was dissolved in the copper structure; the remainder of Ag and Au formed precipitates.  相似文献   

16.
生物质转化获得的生物质油可作为重要的制氢原料, 选取生物质油的主要成分乙酸作为模型化合物, 开展了乙酸自热重整催化制氢研究。采用共沉淀法制备了铁促进的类水滑石型钴基催化剂, 用于乙酸自热重整制氢体系, 并利用XRD、H2-TPR、N2低温物理吸脱附、TG等表征手段对催化剂进行表征测试。结果表明: 通过共沉淀法获得了以类水滑石结构为前驱体的(Co/Fe)xAl2CO3(OH)y·zH2O物相; 该前驱体经焙烧后获得的氧化物, 其主要物相为氧化铝担载的尖晶石结构, 包括CoAl2O4、Co3O4、Fe3O4、FeAl2O4等, BJH模型计算显示CoxAl3FeyOm±δ催化剂形成了介孔结构, 其中Co0.45Al3Fe0.4O5.55±δ孔径分布集中在4 nm左右, H2-TPR及XRD测试显示添加助剂Fe提升了催化剂还原度, 并在还原过程中形成了CoFe合金; 所获催化剂在乙酸自热重整反应中, 氢气产率达到 2.72 mol-H2/mol-HAc, 并保持稳定。表征结果还显示, 该催化剂在反应中结构稳定, CoFe合金稳定存在, 并未出现积炭, 表明催化剂具有抗氧化、抗积碳的特点。  相似文献   

17.
Single barrier magnetic-tunnel-junctions (MTJs) with the layer structure of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22 Mn78(12)/Co60Fe20B20(4)/Al(0.8)-oxide/Co60Fe20B20(4)/Cu(30)/Ta(5) [thickness unit: nm] using the amorphous Co60Fe20B20 alloy as free and pinned layers were micro-fabricated. The experimental investigations showed that the tunnel magnetoresistance (TMR) ratio and the resistance decrease with increasing dc bias voltage from 0 to 500 mV or with increasing temperature from 4.2 K to RT. A high TMR ratio of 86.2% at 4.2 K, which corresponds to the high spin polarization of Co60Fe20B20, 55%, was observed in the MTJs after annealing at 270℃for 1 h. High TMR ratio of 53.1%, low junction resistance-area product RS of 3.56 kΩμm2, small coercivity HC of ≤4 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 of greater than 570 mV at RT have been achieved in such Co-Fe-B MTJs.  相似文献   

18.
Detailed microstructural characterization of magnets and homogenized as-cast alloys, which included X-ray diffraction Rietveld analysis, has indicated that the so-called platelet or lamellae phase is (SmZr)1(CoFeCu)3 with the PuNi3 structure and lattice parameters a~0.5 nm and c~2.4 nm. The structural and magnetic properties of the (SmZr)Co3 phase were investigated. The microstructure shows two phases differing in their Zr/Sm ratio. Magnetization curves for the samples (Sm0.33Zr 0.67)Co3, (Sm0.33Zr0.67)Co 2.97Fe0.03, and (Sm0.67Zr0.33)Co3 are consistent with the two-phase microstructure observed. Room temperature coercivity values of these samples are low (ap1 kOe.)  相似文献   

19.
Alloys of composition Nd9Fe85B6, Nd11.76Fe82.46B5.88, and Nd18Fe76B6 were prepared by melt spinning at roll velocities from 19 to 25 m/s. The grain size distribution of rapidly quenched flakes was evaluated by means of X-ray diffraction line broadening. The average grain size of rapidly quenched Nd-Fe-B alloys is within a range from 19 to 40 nanometers and differs from the roll contact side to the free side of the flakes. For the first time, the spin reorientation transitions TST of nanophase Nd 2Fe14B alloys have been determined. They were found to be lower than that of bulk Nd2Fe14B. The smaller the grain size, the lower is TST. Also for the first time, the temperature dependence of the coercivity of nanophase Nd-Fe-B magnets was determined from 4.2 to 300 K by measuring hysteresis loops on a single flake in a pulsed-field magnetometer with a field strength up to 24 MA/m. The coercivity of the nanophase Nd-Fe-B has less of a temperature dependence than sintered magnets  相似文献   

20.
采用WinTA 100热膨胀仪研究了四方黄铜矿CdGeAs2晶体在320~620 K温度范围内的热膨胀行为, 探索了CdGeAs2晶体热膨胀各向异性的物理机制。测定晶体a轴和c轴方向的热膨胀系数αaαc发现, αa>>αc>0, 表现出强烈的各向异性热膨胀特性。利用最小二乘法, 拟合出CdGeAs2晶体的晶格常数(a, c)与温度(T)的函数关系式, 与文献报道值吻合。分别计算出不同温度下的四方畸变因子δ=2-c/a, Cd-As 键长(lCd-As)和 Ge-As 键长(lGe-As)以及相应的热膨胀系数αCd-AsαGe-As。结果表明, acδlCd-AslGe-AsαCd-As均随着温度的升高而增大, c/aαGe-As则随着温度的升高而减小。当T=360 K时,αCd-AsαGe-As的6.36倍, 是造成CdGeAs2晶体强烈热膨胀各向异性的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号