首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
利用微胶囊红磷(MRP)和聚苯醚(PPO)来提高高抗冲聚苯乙烯(HIPS)的阻燃性能,通过熔融共混法制备了一系列不同组成的MRP-PPO/HIPS复合材料.采用水平燃烧、垂直燃烧、氧指数、锥形量热分析、高温热分解实验等方法研究了复合材料的阻燃性能.研究表明,阻燃剂用量相同时,在HIPS基体中同时加入MRP和PPO得到的复合材料比单独加入MRP或PPO得到的复合材料具有更好的阻燃性能.当MRP-PPO/HIPS的质量比为10∶20∶70时,复合材料的氧指数为23.9%,水平燃烧级别达到FH-1级,垂直燃烧级别达到FV-0级,阻燃性能达到最佳.MRP用量过多时,复合材料的阻燃性能下降.研究认为,PPO和MRP对HIPS具有较强的协同阻燃作用.两者以适当比例并用时能够使复合材料在燃烧时的热释放速率和燃烧热大幅度减小,降低了气相燃烧区的温度,起到气相阻燃作用.同时,复合材料在热分解和燃烧时能够生成连续和致密的炭层,抑制了燃烧过程中的热量传递和物质交换,起到凝聚相阻燃作用.因此,复合材料的阻燃性能显著改善.  相似文献   

2.
以氢氧化镁(MH)、氢氧化铝(ATH) 和微胶囊红磷(MRP) 为无卤阻燃剂, 高抗冲聚苯乙烯(HIPS) 树脂为聚合物基体, 通过熔融共混法制备了一系列不同组成的MH-ATH-MRP/HIPS复合材料。采用水平燃烧、垂直燃烧、氧指数、锥形量热分析、高温热分解实验等方法研究了复合材料的阻燃性能。结果表明, 阻燃剂用量相同时, 在HIPS基体中同时引入MH和ATH得到的复合材料比单独加入MH或ATH得到的复合材料具有更好的阻燃性能。当MH-ATH/HIPS的质量比为70:30:100时, 复合材料的水平燃烧级别达到FH-1级, 氧指数为25.2%, 但垂直燃烧无级别。在上述体系中加入极少量的MRP(占复合材料的质量分数为2.9%)就可使复合材料的火灾性能指数(FPI) 提高85%, 燃烧过程中热量释放和质量损失更慢、成炭能力明显增强, 垂直燃烧级别达到FV-0级。当MH-ATH-MRP/HIPS的质量比为21:9:12:100时, 复合材料的各项阻燃性能达到最佳, 可以大幅度减少阻燃剂的用量。MH、ATH和MRP对HIPS具有非常显著的协同阻燃作用。同时加入MH和ATH时不仅可以在更宽的温度范围内抑制HIPS的升温和分解, 而且能够在更宽的温度范围内相继释放出水蒸气稀释氧气和可燃气体的浓度, 从而起到协同阻燃作用。加入MRP后复合材料的成炭能力大大增强, 进一步改善了凝聚相阻燃的效果, 因此阻燃性能显著提高。  相似文献   

3.
以氢氧化镁(MH)、氢氧化铝(ATH)和微胶囊红磷(MRP)为无卤阻燃剂,高抗冲聚苯乙烯(HIPS)树脂为聚合物基体,通过熔融共混法制备了一系列不同组成的MH-ATH-MRP/HIPS复合材料.采用水平燃烧、垂直燃烧、氧指数、锥形量热分析、高温热分解实验等方法研究了复合材料的阻燃性能.结果表明,阻燃剂用量相同时,在HIPS基体中同时引入MH和ATH得到的复合材料比单独加入MH或ATH得到的复合材料具有更好的阻燃性能.当MH-ATH/HIPS的质量比为70∶30∶100时,复合材料的水平燃烧级别达到FH-1级,氧指数为25.2%,但垂直燃烧无级别.在上述体系中加入极少量的MRP(占复合材料的质量分数为2.9%)就可使复合材料的火灾性能指数(FPI)提高85%,燃烧过程中热量释放和质量损失更慢、成炭能力明显增强,垂直燃烧级别达到FV-0级.当MH-ATH-MRP/HIPS的质量比为21∶9∶12∶100时,复合材料的各项阻燃性能达到最佳,可以大幅度减少阻燃剂的用量.MH、ATH和MRP对HIPS具有非常显著的协同阻燃作用.同时加入MH和ATH时不仅可以在更宽的温度范围内抑制HIPS的升温和分解,而且能够在更宽的温度范围内相继释放出水蒸气稀释氧气和可燃气体的浓度,从而起到协同阻燃作用.加入MRP后复合材料的成炭能力大大增强,进一步改善了凝聚相阻燃的效果,因此阻燃性能显著提高.  相似文献   

4.
以可膨胀石墨(EG)和微胶囊红磷(MRP)为无卤阻燃剂对高抗冲聚苯乙烯(HIPS)进行阻燃改性,通过熔融共混法制备了一系列不同组成的HIPS/EG/MRP复合材料。采用氧指数、水平燃烧和垂直燃烧方法研究了复合材料的阻燃性能,研究表明,在阻燃剂用量相同时,与单独加入EG和MRP相比,同时加入EG和MRP所制备的HIPS复合材料的阻燃性能更好,当HIPS/EG/MRP的质量比为70/20/10时,HIPS复合材料的阻燃性能最佳,氧指数可达27.4%,水平燃烧性能和垂直燃烧性能分别达到FH-1级和FV-0级。在最佳阻燃剂配比下,研究了苯乙烯-丁二烯-苯乙烯共聚物(SBS)对HIPS复合材料的阻燃性能和力学性能的影响,结果表明,SBS的加入能够有效的改善HIPS复合材料的力学性能,且几乎不影响其阻燃性能。  相似文献   

5.
通过熔融混合方法把MgO和(或)微胶囊红磷(MRP)加入高抗冲聚苯乙烯(HIPS)基体中制备了一系列不同组成的MgO-MRP/HIPS复合材料。采用极限氧指数(LOI)、垂直燃烧(UL-94)、锥形量热分析、TGA、SEM、XRD、FTIR等方法研究了复合材料的阻燃性能。结果表明,MgO和MRP单独使用时对HIPS的阻燃作用较小,但是当二者以适当比例共同使用时对HIPS有明显的协同阻燃作用。当MgO∶MRP∶HIPS的质量比为35∶15∶100时,复合材料的LOI为24.7%,UL-94级别达到V-0级,热释放速率和总热释放量显著降低,表现出良好的阻燃性能。MgO-MRP/HIPS复合材料在无氧条件下热分解时,MgO、MRP与HIPS之间无相互作用。但是,在空气中热分解或燃烧时,MgO和MRP均能够促进HIPS成炭。MgO-MRP/HIPS复合材料燃烧时能够在材料表面生成连续致密的炭层,起到防火屏障作用,提高材料的阻燃性能,燃烧残余物主要由结晶性MgO和含磷的无定形碳组成。此外,MgO-MRP/HIPS复合材料燃烧时MRP在气相也起到了一定的阻燃作用。  相似文献   

6.
以无卤阻燃剂三聚氰胺氰尿酸盐(MCA)为改性剂, 采用熔体共混法制备了改性聚苯醚/聚苯乙烯 (PPO/PS)复合材料。通过XRD和SEM对MCA-PPO/PS复合材料的微观结构进行了表征, 重点研究了复合材料的燃烧性能和流动性能。研究发现: 在复合材料的制备和加工过程中MCA的微观结构并没有发生任何变化, 因此复合材料中MCA的阻燃作用不变。MCA在复合材料中分散比较均匀, 无明显团聚现象。与纯PS相比, 质量比为100:100的PPO/PS在燃烧时的氧指数增加5.4%, 热释放速率峰值降低33.1%, 但总烟释放量增加近1.5倍。在PPO/PS中加入MCA后得到的复合材料的阻燃性能随着MCA用量增加而逐渐增强, 发烟量大幅度降低, 同时熔体黏度减小, 流动性增加。在MCA-PPO/PS复合材料中加入5%、 25%和45%质量分数的MCA可分别使复合材料的总烟释放量比PPO/PS降低43.7%、 82.6%和91.6%。PPO/PS的阻燃机制为凝聚相成炭阻燃, 随着MCA用量增加, MCA-PPO/PS复合材料的阻燃机制逐渐转变为气相稀释和对聚合物基体的冷却效应。加入MCA对MCA-PPO/PS复合材料可同时起到阻燃、 抑烟和改善加工流动性的作用。  相似文献   

7.
以水菱镁石(HM)和Mg(OH)_2为阻燃剂,利用双螺杆挤出机制备了一系列HM-Mg(OH)_2协同聚乙烯(PE)阻燃复合材料。采用垂直燃烧仪、极限氧指数仪、锥形量热仪和拉伸性能测试仪分别测试了HMMg(OH)_2协同PE阻燃复合材料的阻燃性能和拉伸性能,采用热重分析仪研究了HM-Mg(OH)_2协同PE阻燃复合材料的热分解行为。结果表明,HM与Mg(OH)_2以适当比例复配作为阻燃剂能在更宽的燃烧温度范围内发生分解,起到更好的阻燃效果,在极限氧指数和拉伸强度不变的前提下,HM-Mg(OH)_2协同PE阻燃复合材料的成本大幅下降。两种阻燃剂协同可以减少复合材料点燃初期的无效甚至负面分解,保留了HM分解产物对PE基体高温下分解的抑制作用,同时还可以在燃烧区域表面形成较为稳定和不易破坏的鳞片状保护层,加之复合阻燃剂总体更高的总分解释放率,多种因素共同作用,使复合材料的阻燃效果提高。当HM和Mg(OH)_2以质量比1∶2协同且用量达到复合材料总质量的60wt%时,HM-Mg(OH)_2协同PE阻燃复合材料的极限氧指数为28%,垂直燃烧级别达到UL-94V-0级,拉伸强度达到28.8 MPa。  相似文献   

8.
用锥形量热仪、TGA、LOI及UL94垂直燃烧研究了Novolac对MRP阻燃高抗冲聚苯乙烯(HIPS)性能的影响.结果表明,在MRP阻燃HIPS中添加适量的Novolac,可以使材料的阻燃性能满足使用要求,且随着Novolac用量的增加,材料的阻燃性能和热稳定性上升.  相似文献   

9.
以次磷酸铝(AHP)为阻燃剂对高密度聚乙烯(HDPE)基木塑复合材料进行阻燃改性。采用锥形量热、垂直燃烧、极限氧指数(LOI)系统评价复合材料的阻燃性能。通过拉伸强度、无缺口冲击强度、弯曲强度等测试,探讨了复合材料的力学性能。并通过热失重分析、扫描电镜对AHP阻燃木粉/HDPE(WF/HDPE)复合材料的机理进行分析。结果表明,AHP、木粉(WF)及WF中的结合水构成膨胀阻燃体系,AHP质量分数为30%时,WF/HDPE复合材料达到垂直燃烧V-0级别,LOI值达到25.5%,阻燃性能显著提高。AHP的加入使WF/HDPE复合材料的力学性能有所下降。  相似文献   

10.
采用熔融共混法制备出了高抗冲聚苯乙烯(HIPS)/高性能纳米氢氧化铝(nano-CG-ATH)/包覆红磷(ERP)/改性聚苯醚(MPPO)无卤阻燃复合材料,研究了nano-CG-ATH、ERP和MPPO对HIPS基复合材料阻燃性能、力学性能和热稳定性的影响;利用扫描电镜分析了HIPS基复合材料燃烧后的炭层形貌;利用傅里叶变换红外光谱分析了HIPS/nano-CGATH/ERP/MPPO(60/6/9/25)复合材料及其经不同温度热处理后残留物的结构。结果表明,nano-CG-ATH、ERP和MPPO之间有很好的协效阻燃效果,当nano-CG-ATH用量为6%(质量分数,下同),ERP用量为9%,MPPO用量为25%时,HIPS复合材料的极限氧指数达到27.5%,UL-94级别达到V-0级;该复合材料的拉伸强度达到30.04 MPa,弯曲模量达到2485.60 MPa;热分解后残留物质的量达到10.58%。但是该复合材料的冲击性能有待提高。  相似文献   

11.
以改性天然碳水化合物结合碱式硫酸镁晶须(MHSH)混杂纤维为协效剂,结合膨胀阻燃剂(IFR)制备了阻燃型聚丁二酸丁二醇酯(PBS)木纤维复合材料。利用极限氧指数和垂直燃烧测试研究了复合材料的阻燃性能,并采用TG/DTA-MS对复合材料的热解过程、吸放热量和热解燃烧气体产物进行了分析。结果表明,5%的木薯渣作为碳源代替PBS提高了材料的阻燃性能。IFR/木薯渣/MHSH阻燃剂能够有效提高PBS的燃烧初始温度,并缩小燃烧温度范围。阻燃材料燃烧时,首先是IFR受热分解产生不可燃气体氨气在材料表层形成第一层阻燃保护层;其次,材料迅速燃烧产生的炭层形成第二层阻燃保护层;最后,在高温段MHSH分解形成第三层协效阻燃保护层。因此,最终形成了由外层不可燃气体氨气和内层天然碳水化合物MHSH膨胀炭层构成的气-固阻燃屏障,从而有效地提高了复合材料的阻燃性能。  相似文献   

12.
环氧树脂/聚磷酸铵复合材料的阻燃性能与热降解行为   总被引:1,自引:0,他引:1  
利用环氧树脂(EP)成炭能力,引入聚磷酸铵(APP)以提高其阻燃性能。当APP质量分数为9%时,EP/APP氧指数达30.5%,垂直燃烧性能通过V-0级。相比EP,EP/APP的热释放峰值与总热释放均有所下降。此外,利用热失重-红外联用设备研究了EP以及EP/APP的热降解行为并解释相关机理:EP在高温下会释放CO、甲醇等易燃性气体,剧烈燃烧并放出大量的热;APP在低温阶段的热裂解产物会催化EP的降解,但在高温下EP/APP却有热稳定性优异的炭层形成,在火灾中此炭层会覆盖在基体表面保护下部材料以免其遭到进一步的破坏。  相似文献   

13.
Polyaniline (PANI) nanofibers grafted reduced graphene oxide (PANI–RGO) is prepared using the “grafting-from” strategy and then is incorporated into polypropylene (PP) matrix by way of the master batch-based melt mixing method. Grafted PANI nanofibers can improve the dispersion and electrical conductivity of reduced graphene oxide (RGO). The electrical conductivity of the modified RGO and its composites is not impaired by the grafted polymer, due to the conductive characteristics of PANI. The barrier action of PANI–RGO can greatly inhibit the release of flammable pyrolysis products of PP. PANI–RGO exhibits a marked flame retardancy effect on PP. The smoke release of the composites is slightly retarded. Transmission electron microscopy image and Raman spectrum of the char residue for PANI–RGO based composite indicate the formation of carbon nanofibers during combustion. The in situ formed carbon nanofibers on graphene nanosheets can enhance barrier performance against heat and mass transfer, resulting in enhanced flame retardancy.  相似文献   

14.
以甲基乙基次膦酸铝(Al(MEP))作为环氧树脂(EP)的阻燃剂, 制备了Al(MEP)/EP复合材料, 利用垂直燃烧和氧指数法研究了Al(MEP)/EP复合材料的阻燃性能; 探讨了不同组成的Al(MEP)/EP复合材料的弯曲强度和冲击强度; 采用红外光谱(FTIR) 、 TGA 、 DSC、 SEM分别对样品的结构、 热稳定性、 玻璃化转变温度(Tg) 和形貌进行了分析。 结果表明, Al(MEP)的质量分数为15%时, Al(MEP)/EP复合材料的氧指数值(LOI)即可达到32.5%, 垂直燃烧达到UL 94 V-0级。此外, 各种组成的复合材料的力学性能较好、 热稳定性能优良。  相似文献   

15.
赵盼盼  李丽萍 《材料导报》2017,31(6):115-119
以聚磷酸铵(APP)和次磷酸铝(AHP)为阻燃剂,马来酸酐接枝聚丙烯(MA-g-PP)为界面相容剂,通过熔融共混制备了聚丙烯(PP)/木粉(WF)复合材料。采用UL-94垂直燃烧、氧指数(LOI)、热重分析(TGA)探究了阻燃PP/WF复合材料的阻燃性和热分解过程。实验表明,当APP与AHP质量比为9∶1时,LOI值为28.3%,垂直燃烧UL-94达到V-0级。TGA和DTG测试表明,APP与AHP复配能降低木纤维的分解温度,使复合材料提前成炭,达到阻燃作用;加入APP与AHP的PP/WF复合材料的成炭率提高了141%,其高温稳定性也得到提高。通过SEM观察到,当m(APP)∶m(AHP)=9∶1时,木塑复合材料可形成致密的炭层,具有更好的隔热、隔氧作用,从而提高了阻燃性。结果表明在聚磷酸铵中加入少量的协效剂次磷酸铝可明显提高PP/WF复合材料的阻燃性。  相似文献   

16.
通过共沉淀法制备了亚微米尺寸的羟基锡酸钴(CHS)阻燃剂,并将其应用于软质聚氯乙烯(PVC)中,制得CHS/PVC复合材料。采用极限氧指数仪(LOI)、锥形量热仪、TG和拉伸仪研究了CHS/PVC复合材料的阻燃性能、热稳定性和力学性能。结果表明,CHS可以有效提高CHS/PVC复合材料的阻燃性能,并对CHS/PVC复合材料的力学性能保护较好;与空白PVC相比,当CHS添加量(CHS与PVC质量比)为10%时,CHS/PVC复合材料的LOI增加了2.3%,热释放速率峰值和烟释放速率峰值分别下降了39.6%和57.4%。这主要是由于CHS受热后脱除的水具有冷却和稀释热量的作用;另一方面在燃烧过程中生成的CoCl2可以有效催化PVC早期分解,形成更加致密且连续的残炭,从而有效抑制PVC的燃烧。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号