首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
低压沉积温度对MoSi2涂层微观结构与性能影响   总被引:3,自引:1,他引:2  
以SiCl4和H2为原料,采用低压化学气相沉积(LPCVD)渗硅法在Mo基体表面原位反应制备了MoSi2涂层,研究了沉积温度对MoSi2涂层微观形貌、物相组成、沉积速率、涂层的硬度、涂层与基体结合强度的影响. 研究结果表明:在1100~1200℃下制备的涂层结构致密,由单一MoSi2组成,沉积速率、涂层的硬度以及与基体的结合强度均表现为増加的趋势;当沉积温度高于1200℃,涂层出现开裂现象,由游离Si和MoSi2两相组成,涂层沉积速率、硬度和结合强度均出现下降的趋势. 1100℃以下沉积的主要控制步骤为Si与Mo反应,而1100℃以上Si在涂层中的扩散对沉积过程起控制作用.  相似文献   

2.
以Cf/SiC复合材料为基体, 采用原位反应法制备了MoSi2-SiC-Si涂层, 借助XRD、扫描电镜及能谱对涂层的结构及组成进行了分析研究, 并考查了其高温抗氧化性能. 结果表明, 涂层总厚度约120μm, 主要由MoSi2、SiC和Si组成. MoSi2-SiC-Si涂层具有优异的高温抗氧化性能, 在1500℃静态空气中氧化96h, 涂层试样失重仅1.8%. 涂层试样失重的主要原因是由于氧气通过涂层中的贯穿性裂纹与Cf/SiC复合材料基体发生了反应.  相似文献   

3.
采用包埋技术在C/C复合材料表面制备SiC-WSi2/MoSi2抗氧化复合涂层; 通过恒温氧化实验以及X射线衍射分析、扫描电镜观察及能谱分析, 研究了W、Mo含量对复合涂层微观结构和高温抗氧化性能的影响. 结果表明: 随着包埋粉料中W、Mo含量的增加, 所制备复合涂层的厚度先增加后减小; 含有10.0at% W和Mo制备的复合涂层具有相对较大的厚度和较为致密的结构, 且WSi2和MoSi2含量相对较高; 氧化过程中在涂层表面形成致密和稳定的SiO2玻璃保护膜; 在1500℃氧化315h后, 带有该涂层的C/C试样仍然没有失重, 且经过18次1500℃←→室温急冷急热后涂层没有开裂和脱落, 说明该涂层具有优异的抗氧化和抗热震性能.  相似文献   

4.
真空等离子喷涂碳化硼涂层制备与抗激光辐照性能研究   总被引:1,自引:0,他引:1  
采用真空等离子喷涂技术,在不锈钢基体上制备碳化硼(B4C)涂层,并对涂层的组成、结构、沉积效率、结合强度以及抗激光辐照性能进行了表征.结果显示,真空等离子喷涂B4C涂层中没有出现明显的B2O3相,表明真空等离子喷涂可有效避免B4C氧化现象.采用较细的粉末制备的B4C涂层较为致密.较高的喷涂功率和较大的氢气流量,有助于改善粉末的熔化程度,从而提高涂层的沉积效率和结合强度.在适宜的工艺参数下,涂层的沉积效率与结合强度可分别达72%与49MPa.激光辐照试验表明,在不锈钢表面沉积B4C涂层,可以明显改善其抗激光辐照性能.  相似文献   

5.
金刚石/碳化硅复合梯度膜制备研究   总被引:2,自引:0,他引:2  
采用微波等离子化学气相沉积(MW-PCVD)制备金刚石/碳化硅复合梯度膜.工作气体为H2,CH4和Si[CH3]4(四甲基硅烷,TMS),其中H2∶CH4=100∶0.6,Si[CH3]4为0%-O.05%,沉积压力为3300Pa,基体温度为700℃,微波功率为700W.基体为单晶硅,在沉积前用纳米金刚石颗粒处理.沉积后的样品经扫描电子显微镜(SEM),电子探针显微分析(EPMA),X射线能量损失分析(EDX)表明:沉积膜中的碳化硅含量是随Si[CH3]4流量的变化而改变.通过改变Si[CH3]4的流量可以制备金刚石/碳化硅复合梯度膜,且梯度膜中金刚石与复合膜过渡自然平滑.  相似文献   

6.
为了提高钢基体微晶玻璃涂层的韧性, 在Q235钢基体上采用涂搪法制备了钇稳定四方相氧化锆/Li2O- ZnO-Al2O3-SiO2 (3Y-TZP/LZAS) 微晶玻璃功能梯度涂层。采用XRD、SEM分析了梯度涂层的物相组成和微观结构, 采用压痕法测试并计算了涂层的显微硬度和断裂韧性, 通过粘接-拉伸法测试了涂层的结合强度。结果表明, 3Y-TZP/LZAS微晶玻璃功能梯度涂层各层之间的界面结合紧密; 涂层与钢基体依靠玻璃中的SiO2与铁的氧化物发生界面反应形成牢固的结合, 反应产物为Fe2SiO4和FeSiO3; 涂层的显微硬度和断裂韧性沿涂层厚度方向逐渐增大, 涂层韧性提高是表面残余压应力增韧、3Y-TZP相变及3Y-TZP的颗粒增韧共同作用的结果; 梯度涂层与Q235的结合强度达16.3 MPa。热震实验表明, 梯度涂层在300℃下经历30余次热循环, 表现出较好的抗热震性能。  相似文献   

7.
对Si3N4颗粒及SiC晶须强韧化MoSi2复合材料在773K下的氧化行为进行了研究.通过热重量分析法(TG)分析了MoSi2及其复合材料MoSi2-Si3N4(p)和MoSi2-Si3N4(P)SiC(w)在773K下的氧化性能, 采用SEM和X射线衍射测定其表面形貌和氧化物相组成.结果发现:在773K下, 纯MoSi2和MoSi2+20vol%Si3N4均发生了“Pesting”氧化, 氧化过程服从直线规律, 氧化产物层疏松, 氧化产物主要为MoO3; MoSi2+40vol%Si3N4氧化服从抛物线规律, 速率常数Kp为0.04mg2/(cm4·h), 氧化层致密, 成分主要为SiO2、Si2N2O, 增加Si3N4的含量可显著提高MoSi2的抗“Pesting”氧化能力; MoSi2+20vol%Si3N4+20vol%SiC发生了严重的粉化现象, 氧化产物主要为短针状MoO3.  相似文献   

8.
齐涛  郭喜平 《无机材料学报》2009,24(6):1219-1225
采用Si-Y2O3包埋共渗工艺在铌硅化物基超高温合金表面制备Y改性的硅化物涂层, 研究其在1250℃的恒温氧化性能. 采用扫描电镜(SEM)、能谱(EDS)与X射线衍射(XRD)分析Si-Y2O3共渗涂层氧化前后的物相组成和组织变化. 结果表明:涂层具有明显分层的结构, 由外至内依次为(Nb,X)Si2(X表示Ti, Hf和Cr)外层和(Nb,X)5Si3过渡层, 在过渡层与基体之间有不连续分布的细小(Cr,Al)2(Nb,Ti)块状沉淀. EDS分析表明, 涂层中的Y分布是不均匀的, (Cr,Al)2(Nb,Ti)相的Y含量为0.94at%左右, 而(Nb,X)Si2和(Nb,X)5Si3相的Y含量为0.46at%~0.57at%. 经1250℃分别氧化5, 10, 20, 50和100h后, Si-Y2O3共渗涂层保持其原始的相组成, 并在其表面形成以TiO2、 SiO2和Cr2O3组成的致密混合氧化膜, 且与基体结合良好.  相似文献   

9.
为提高碳/碳复合材料抗氧化性能,以甲基三氯硅烷(MTS)为先驱体,利用低压化学气相沉积(LPCVD)技术在碳/碳复合材料表面制备SiC-MoSi2涂层,通过XRD和SEM分析了不同沉积温度下涂层结构、物相组成及其沉积机理。结果表明,沉积温度对涂层的成分、结构及致密度有较大影响,在1100~1250℃均可成功得到SiC-MoSi2涂层,1100℃所得涂层结构疏松多孔;1250℃制备的涂层中间部位孔隙较多,表层为致密SiC涂层;1150~1200℃之间可得到均匀致密、以MoSi2颗粒为分散相、以CVD-SiC为连续相的SiC-MoSi2双相陶瓷涂层。  相似文献   

10.
采用大气等离子喷涂方法,成功地制备了HA/TiO2复合涂层,对复合涂层的结合强度、微观结构、水浸渍下的表面形貌进行了较为深入的研究.结果表明,由于TiO2的加入,HA/TiO2涂层的结合强度明显高于纯HA徐层,而且导致涂层破坏机理由粘合破坏向内聚破坏转化.这是由于HA/TiO2的复合缓和了涂层与基体间的膨胀系数失配现象,改善了涂层与基体之间的结合.SEM观察显示,HA/TiO2涂层表面有一些细小的裂纹,但在去离子水中浸泡后就会消失,而且不容易产生新的裂纹,这说明TiO2的加入不但改善了涂层与基体之间的结合,同时增强了涂层内部颗粒的结合.  相似文献   

11.
以SiCl4-NH3-H2为前驱体, 在750~1250 ℃范围内通过低压化学气相沉积技术于碳纤维布上制备氮化硅涂层, 系统研究了沉积温度对氮化硅涂层的生长动力学、形貌、化学组成和结合态的影响。研究结果表明, 在沉积温度低于1050 ℃的情况下, 随着沉积温度的升高, 沉积速率单调增大。而当沉积温度高于1050 ℃时, 沉积速率随温度升高逐渐下降。在整个沉积温度范围内, 随着沉积温度的升高, 涂层表面形态逐渐向菜花状转变, 同时涂层表面变得愈加粗糙。涂层的最佳沉积温度在750~950 ℃之间。随着沉积温度的升高, 涂层中氮含量先降低后升高, 而硅含量不断增加, 氧含量在整个温度范围内逐渐降低。原始沉积涂层均呈无定形态, 经高于1300 ℃热处理后实现晶化, 并伴随着表面形貌的显著变化。此时涂层仅由a-Si3N4构成, 不存在任何b-Si3N4相。  相似文献   

12.
本文研究了添加Al对热压MoSi2材料显微结构的影响,提出了过渡气相烧结的概念.结果表明,Al可消除纯MOSi2材料中的SiO2相,生成Al2O3颗粒.Al原子的扩散引起MOSi2晶格膨胀.由于Al蒸汽排除了孤立气孔内影响烧结的残留气体,从而降低了烧结体的气孔率,同时,MOSi2晶格畸变也促进了烧结.Al粉添加量为3.5Wt%时气孔率最低.  相似文献   

13.
以BCl3-NH3-H2-N2为前驱体系统, 在垂直放置的热壁反应器中利用化学气相沉积工艺制备氮化硼(BN)涂层, 分析了工艺参数对沉积速率的影响, 通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和X射线衍射技术(XRD)分析了碳化硅纤维表面BN涂层的形貌和微观结构, 提出了BN沉积过程中主要的气相和表面反应, 以及关键气相组分。研究结果显示:在600~850℃的范围内, 随着沉积温度的升高, BN沉积速率逐渐加快, 同一温度下, 沉积区域内BN沉积速率沿气流方向逐渐减缓, 表明气相组分在气流方向逐渐消耗; 随着系统压力的提高, BN沉积速率先加快后减缓, 表明沉积过程由表面反应控制转变为质量传输控制; 随滞留时间延长, 距气体入口1~3 cm处, BN的沉积速率逐渐增大, 而距气体入口4~5 cm处, 沉积速率先增大后逐渐变小。SEM照片显示碳化硅纤维表面BN涂层光滑致密, XPS结果表明主要成分为BN及氧化产物B2O3, XRD图谱表明热处理前BN为无定形态, 1200℃热处理后BN的结晶度提高, 并向六方形态转变。BN的沉积是由BCl3和NH3反应所生成的中间气相组分Cl2BNH2、ClB(NH2)2和B(NH2)3来实现的。  相似文献   

14.
以三氯化硼、甲烷和氢气的混合气体为前驱体,利用磁悬浮天平热重系统研究了850~1200℃区间内化学气相沉积掺硼碳的原位动力学.探索了温度对沉积速率的影响,计算了该温度区间内沉积过程的表观活化能,同时借助SEM和EDS技术.测试了不同温度点(900℃、1000℃、1100℃和1200℃)沉积产物的微观结构和成分.结果表明,化学气相沉积掺硼碳属于典型的热激活反应过程;在所研究的温度区间内存在5种不同的反应控制机制;随着温度的升高,沉积产物的n(B)/n(C)和堆积密度都显著变小,说明高n(B)/n(C)和高致密度的掺硼碳涂层应在较低的温度下制备.  相似文献   

15.
Ti3SiC2-64vol%SiC复相陶瓷高温氧化机理研究   总被引:1,自引:0,他引:1  
采用热等静压原位合成了高致密的Ti3SiC2-64vol%SiC复相陶瓷. 通过热重实验研究其在1100~1450℃中空气气氛的高温氧化行为和机理. 研究显示,复相陶瓷的等温动力学曲线遵循抛物线型氧化或抛物线型直线型氧化规律. SiC (64vol%)的引入显著提高了Ti3SiC2-SiC材料的抗氧化能力. XRD及SEM-EDS分析显示,氧化膜由外层金红石型TiO2和非晶态SiO2组成,过渡层为TiO2与SiO2混合物. 高温下(1400℃),非晶态SiO2的形成改变了TiO2膜的生长形态,形成致密TiO2膜,有效阻碍了氧的扩散. 长时间氧化其抛物线速率常数比在1200℃下氧化低一个数量级. 材料在1400℃下的抗氧化性能明显优于在1200℃下的抗氧化性能.  相似文献   

16.
常压烧结ZrB2-SiC复相材料的抗氧化行为研究   总被引:1,自引:0,他引:1  
以溶胶凝胶法合成的超细ZrB2粉体为主要原料,研究了不同含量Mo和Mo-B4C为烧结助剂时,ZrB2-SiC体系的常压烧结工艺,测试了其力学性能,并系统研究了分别以4wt%Mo和4wt%Mo-2wt%B4C为烧结助剂制备的ZrB2-20wt%SiC复相陶瓷在不同温度下的静态抗氧化行为,研究表明:仅以Mo作为烧结助剂时,在1300℃以上材料表面开始出现ZrO2颗粒析出而迅速氧化. 当添加Mo-B4C复合烧结助剂时,液相保护层在1300℃开始出现,并随着温度升高逐步变厚且均匀,材料在1500℃氧化30min后,抗弯强度仍有室温强度的86%,表现出良好的抗氧化性能.  相似文献   

17.
等离子喷涂铈酸镧热障涂层   总被引:2,自引:0,他引:2  
采用等离子喷涂铈酸镧(La2Ce2O7, LC)粉末制备了铈酸镧热障涂层(TBCs).由于等离子喷涂过程中CeO2的挥发量较多,造成涂层的实际成分为La2Ce1.66O4.32,与原始粉末成分相比有所偏离.在1400℃下经240h热处理后LC涂层发生轻微的分解.在1000℃下LC块材的热导率约为0.51W/(m·K),比传统的氧化钇部分稳定的氧化锆(YSZ)块材的热导率降低了约75%.LC涂层的热膨胀系数(CTE)在450~1100℃范围内介于10×10-6~13×10-6K-1,与相应温度范围内的YSZ相比较高.热膨胀性能测量表明,LC涂层从室温升到1250℃时发生轻微的烧结,在1250℃保温过程发生明显的烧结现象.LC热障涂层在1100℃条件下经60次热循环后从陶瓷层内部发生剥落.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号