首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
《Composites Part B》2013,45(1):283-294
In this paper, we extend the successful experience of solving an infinite medium containing circular holes and/or inclusions subject to remote shears to deal with the problem containing elliptical holes and/or inclusions. Arbitrary location, different orientation, various size and any number of elliptical holes and/or inclusions can be considered. By fully employing the elliptical geometry, fundamental solutions were expanded into the degenerate kernel by using an addition theorem in terms of the elliptic coordinates and boundary densities are described by using the eigenfunction expansion. The difference between the proposed method and the conventional boundary integral equation method is that the location point can be exactly distributed on the real boundary without facing the singular integral and calculating principal value. Besides, the boundary stress can be easily calculated free of the Hadamard principal values. It is worthy of noting that the Jacobian terms exist in the degenerate kernel, boundary density and contour integral; however, these Jacobian terms would cancel each other out and the orthogonal property is preserved in the process of contour integral. This method belongs to one kind of meshless methods since only collocation points on the real boundary are required. In addition, the solution is regarded as semi-analytical form because error purely attributes to the number of truncation term of eigenfunction. An exact solution for a single elliptical inclusion is also derived by using the proposed approach and the results agree well with Smith’s solutions by using the method of complex variables. Several examples are revisited to demonstrate the validity of our method.  相似文献   

2.
In this article, a systematic approach is proposed to calculate the torsional rigidity and stress of a circular bar containing multiple circular inclusions. To fully capture the circular geometries, the kernel function is expanded to the degenerate form and the boundary density is expressed into Fourier series. The approach is seen as a semi-analytical manner since error purely attributes to the truncation of Fourier series. By collocating the null-field point exactly on the real boundary and matching the boundary condition, a linear algebraic system is obtained. Convergence study shows that only a few number of Fourier series terms can yield acceptable results. Finally, torsion problems are revisited to check the validity of our method. Not only the torsional rigidities but also the stresses of multiple inclusions are also obtained by using the present approach.  相似文献   

3.
A null-field approach is employed to derive the Green's function for boundary value problems stated for the Laplace equation with circular boundaries. The kernel function and boundary density are expanded by using the degenerate kernel and Fourier series, respectively. Series-form Green's function for interior and exterior problems of circular boundary are derived and plotted in a good agreement with the closed-form solution. The Poisson integral formula is extended to an annular case from a circle. Not only an eccentric ring but also a half-plane problem with an aperture are demonstrated to see the validity of the present approach. Besides, a half-plane problem with a circular hole subject to Dirichlet and Robin boundary conditions and a half-plane problem with a circular hole and a semi-circular inclusion are solved. Good agreement is made after comparing with the Melnikov's results.  相似文献   

4.
A direct boundary integral method in the time domain is presented to solve the problem of an infinite, isotropic Boltzmann viscoelastic plane containing a large number of randomly distributed, non-overlapping circular holes and perfectly bonded elastic inclusions. The holes and inclusions are of arbitrary size and the elastic properties of all of the inclusions can, in general, be different. The method is based on a direct boundary integral approach for the problem of an infinite elastic plane containing multiple circular holes and elastic inclusions described by Crouch and Mogilevskaya [1], and a time marching strategy for viscoelastic analysis described by Mesquita and Coda [2–8]. Benchmark problems and numerical examples are included to demonstrate the accuracy and efficiency of the method.  相似文献   

5.
In this paper, a semi-analytical approach for the eigenproblem of circular plates with multiple circular holes is presented. Natural frequencies and modes are determined by employing the null-field integral formulation in conjunction with degenerate kernels, tensor rotation and Fourier series. In the proposed approach, all kernel functions are expanded into degenerate (separable) forms and all boundary densities are represented by using Fourier series. By uniformly collocating points on the real boundary and taking finite terms of Fourier series, a linear algebraic system can be constructed. The direct searching approach is adopted to determine the natural frequency through the singular value decomposition (SVD). After determining the unknown Fourier coefficients, the corresponding mode shape is obtained by using the boundary integral equations for domain points. The result of the annular plate, as a special case, is compared with the analytical solution to verify the validity of the present method. For the cases of circular plates with an eccentric hole or multiple circular holes, eigensolutions obtained by the present method are compared well with those of the existing approximate analytical method or finite element method (ABAQUS). Besides, the effect of eccentricity of the hole on the natural frequency and mode is also considered. Moreover, the inherent problem of spurious eigenvalue using the integral formulation is investigated and the SVD updating technique is adopted to suppress the occurrence of spurious eigenvalues. Excellent accuracy, fast rate of convergence and high computational efficiency are the main features of the present method thanks to the semi-analytical procedure.  相似文献   

6.
This paper considers the problem of an infinite, isotropic viscoelastic plane containing an arbitrary number of randomly distributed, non-overlapping circular holes and isotropic elastic inclusions. The holes and inclusions are of arbitrary size. All inclusions are assumed to be perfectly bonded to the material matrix but the elastic properties of the inclusions can be different from one another. The Kelvin model is employed to simulate the viscoelastic plane. The numerical approach combines a direct boundary integral method for a similar problem of an infinite elastic plane containing multiple circular holes and elastic inclusions described in [Crouch SL, Mogilevskaya SG. On the use of Somigliana's formula and Fourier series for elasticity problems with circular boundaries. Int J Numer Methods Eng 2003;58:537–578], and a time-marching strategy for viscoelastic material analysis described in [Mesquita AD, Coda HB, Boundary integral equation method for general viscoelastic analysis. Int J Solids Struct 2002;39:2643–2664]. Several numerical examples are given to verify the approach. For benchmark problems with one inclusion, results are compared with the analytical solution obtained using the correspondence principle and analytical Laplace transform inversion. For an example with two holes and two inclusions, results are compared with numerical solutions obtained by commercial finite element software—ANSYS. Benchmark results for a more complicated example with 25 inclusions are also given.  相似文献   

7.
In this paper, the degenerate scale for plate problem is studied. For the continuous model, we use the null-field integral equation, Fourier series and the series expansion in terms of degenerate kernel for fundamental solutions to examine the solvability of BIEM for circular thin plates. Any two of the four boundary integral equations in the plate formulation may be chosen. For the discrete model, the circulant is employed to determine the rank deficiency of the influence matrix. Both approaches, continuous and discrete models, lead to the same result of degenerate scale. We study the nonunique solution analytically for the circular plate and find degenerate scales. The similar properties of solvability condition between the membrane (Laplace) and plate (biharmonic) problems are also examined. The number of degenerate scales for the six boundary integral formulations is also determined. Tel.: 886-2-2462-2192-ext. 6140 or 6177  相似文献   

8.
In this paper, an adaptive fast multipole boundary face method is introduced to implement acoustic problems analysis of 3D solids with open-end small tubular shaped holes. The fast multipole boundary face method is referred as FMBFM. These holes are modeled by proposed tube elements. The hole is open-end and intersected with the outer surface of the body. The discretization of the surface with circular inclusions is achieved by applying several special triangular elements or quadrilateral elements. In the FMBFM, the boundary integration and field variables approximation are both performed in the parametric space of each boundary face exactly the same as the B-rep data structure in standard solid modeling packages. Numerical examples for acoustic radiation in this paper demonstrated the accuracy, efficiency and validity of this method.  相似文献   

9.
The boundary integral equation method in conjunction with the degenerate kernel, the direct searching technique (singular value decomposition), and the only two-trials technique (2 × 2 matrix eigenvalue problem) are analytically and numerically used to find the degenerate scales, respectively. In the continuous system of boundary integral equation, the degenerate kernel for the 2D Kelvin solution in the polar coordinates is reviewed and the degenerate kernel in the elliptical coordinates is derived. Using the degenerate kernel, an analytical solution of the degenerate scales for the elasticity problem of circular and elliptical cases is obtained and compared with the numerical result. Further, the triangular case and square case were also numerically demonstrated.  相似文献   

10.
The purpose of this paper is to present an analytical formulation to describe the free vibration of a circular flexural plate with multiple circular holes by using the null field integral formulation, the addition theorem and complex Fourier series. Owing to the addition theorem, all kernel functions are represented in the degenerate form and further transformed into the same polar coordinates centered at one of circles, where the boundary conditions are specified. Thus, not only the computation of the principal value for integrals is avoided but also the calculation of higher-order derivatives in the flexural plate problem can be easily determined. By matching the specified boundary conditions, a coupled infinite system of simultaneous linear algebraic equations is derived as an analytical model for the title problem. According to the direct searching approach, natural frequencies are numerically determined through the singular value decomposition (SVD) in the truncated finite system. After determining the unknown Fourier coefficients, the corresponding mode shapes are obtained by using the direct boundary integral formulations for the domain points. Several numerical results are presented. In addition, the inherent problem of spurious eigenvalue using the integral formulation is investigated and the SVD updating technique is adopted to suppress the occurrence of spurious eigenvalues. Excellent accuracy, fast rate of convergence and high computational efficiency are advantages of the present method thanks to its analytical features.  相似文献   

11.
The boundary integral equation approach has been shown to suffer a nonunique solution when the geometry is equal to a degenerate scale for a potential problem. In this paper, the degenerate scale problem in boundary element method for the two-dimensional Laplace equation is analytically studied in the continuous system by using degenerate kernels and Fourier series instead of using discrete system using circulants [Engng Anal. Bound. Elem. 25 (2001) 819]. For circular and multiply-connected domain problems, the rank-deficiency problem of the degenerate scale is solved by using the combined Helmholtz exterior integral equation formulation (CHEEF) concept. An additional constraint by collocating a point outside the domain is added to promote the rank of influence matrix. Two examples are shown to demonstrate the numerical instability using the singular integral equation for circular and annular domain problems. The CHEEF concept is successfully applied to overcome the degenerate scale and the error is suppressed in the numerical experiment.  相似文献   

12.
This paper describes a numerical procedure for solving two-dimensional elastostatics problems with multiple circular holes and elastic inclusions in a finite domain with a circular boundary. The inclusions may have arbitrary elastic properties, different from those of the matrix, and the holes may be traction free or loaded with uniform normal pressure. The loading can be applied on all or part of the finite external boundary. Complex potentials are expressed in the form of integrals of the tractions and displacements on the boundaries. The unknown boundary tractions and displacements are approximated by truncated complex Fourier series. A linear algebraic system is obtained by using Taylor series expansion without boundary discretization. The matrix of the linear system has diagonal submatrices on its diagonal, which allows the system to be effectively solved by using a block Gauss-Seidel iterative algorithm.  相似文献   

13.
The electroelastic coupling interaction between a piezoelectric screw dislocation and the embedded circular cross-section inclusions with imperfect interfaces in piezoelectric solids is investigated by using a three-phase composite cylinder model. By means of a complex variable technique, the explicit solutions of electroelastic fields are obtained. With the aid of the Peach-Koehler formula, the explicit expression for the image force exerted on the piezoelectric screw dislocation is derived. The image force on the dislocation and its equilibrium positions near one of the inclusions are discussed for variable parameters (interface imperfection and material electroelastic dissimilarity) and the influence of nearby inclusions is also considered. The results show that when compared with the previous solution (the perfect interface), more equilibrium positions of the screw dislocation in the matrix may be available due to the effect of the interface imperfection when the dislocation is close to the electroelastic stiff inclusion. It is also found that the magnitude of the image force exerted on the piezoelectric screw dislocation produced by multiply inclusions is always smaller than that produced by a single inclusion and the impact of nearby inclusions on the mobility of the screw dislocation is very important.  相似文献   

14.
With the aid of the elastic–viscoelastic correspondence principle, the boundary element developed for the linear anisotropic elastic solids can be applied directly to the linear anisotropic viscoelastic solids in the Laplace domain. Green's functions for the problems of two-dimensional linear anisotropic elastic solids containing holes, cracks, inclusions, or interfaces have been obtained analytically using Stroh's complex variable formalism. Through the use of these Green's functions and the correspondence principle, special boundary elements in the Laplace domain for viscoelastic solids containing holes, cracks, inclusions, or interfaces are developed in this paper. Subregion technique is employed when multiple holes, cracks, inclusions, and interfaces exist simultaneously. After obtaining the physical responses in Laplace domain, their associated values in time domain are calculated by the numerical inversion of Laplace transform. The main feature of this proposed boundary element is that no meshes are needed along the boundary of holes, cracks, inclusions and interfaces whose boundary conditions are satisfied exactly. To show this special feature by comparison with the other numerical methods, several examples are solved for the linear isotropic viscoelastic materials under plane strain condition. The results show that the present BEM is really more efficient and accurate for the problems of viscoelastic solids containing interfaces, holes, cracks, and/or inclusions.  相似文献   

15.
Following the success of using the null-field integral approach to determine the torsional rigidity of a circular bar with circular inhomogeneities (Chen and Lee in Comput Mech 44(2):221–232, 2009), an extension work to an elliptic bar containing elliptic inhomogeneities is done in this paper. For fully utilizing the elliptic geometry, the fundamental solutions are expanded into the degenerate form by using the elliptic coordinates. The boundary densities are also expanded by using the Fourier series. It is found that a Jacobian term may exist in the degenerate kernel, boundary density or boundary contour integral and cancel out to each other. Null-field points can be exactly collocated on the real boundary free of facing the principal values using the bump contour approach. After matching the boundary condition, a linear algebraic system is constructed to determine the unknown coefficients. An example of an elliptic bar with two inhomogeneities under the torsion is given to demonstrate the validity of the present approach after comparing with available results.  相似文献   

16.
For a potential problem, the boundary integral equation approach has been shown to yield a nonunique solution when the geometry is equal to a degenerate scale. In this paper, the degenerate scale problem in boundary element method (BEM) is analytically studied using the degenerate kernels and circulants. For the circular domain problem, the singular problem of the degenerate scale with radius one can be overcome by using the hypersingular formulation instead of the singular formulation. A simple example is shown to demonstrate the failure using the singular integral equations. To deal with the problem with a degenerate scale, a constant term is added to the fundamental solution to obtain the unique solution and another numerical example with an annular region is also considered.  相似文献   

17.
Q. H. Fang  B. Jin  Y. Liu  Y. W. Liu 《Acta Mechanica》2009,203(1-2):113-125
A three-phase composite cylinder model is utilized to study the elastic interaction between screw dislocations and embedded multiple circular cross-section inclusions (fibers) with imperfect interfaces in composites. By means of complex variable techniques, the explicit solutions of stress and displacement fields are obtained. With the aid of the Peach–Koehler formula, the explicit expressions of image forces exerted on screw dislocations are derived. The equilibrium positions of the appointed screw dislocation near one of the inclusions are discussed for variable parameters (interface imperfection, material mismatch and dislocation position) and the influence of the nearby inclusions and dislocations is also considered. The results show that, if the inclusion is stiffer than the matrix and the magnitude of the degree of interface imperfection reaches the certain value, a new equilibrium position for the screw dislocation in the matrix can always be produced in comparison with the previous solution (the perfect interface). The effect of elastic constants of the inclusion on the image force and the equilibrium position of the appointed screw dislocation is weak when the interface imperfection is strong. It is also seen that the magnitude of the image force exerted on the appointed dislocation caused by multiple inclusions is always smaller than that produced by a single inclusion. The impact of the closer dislocations on the mobility of the appointed dislocation is very significant.  相似文献   

18.
In this paper, the resonance of a circular harbor is studied by using the semi-analytical approach. The method is based on the null-field boundary integral equation method in conjunction with degenerate kernels and the Fourier series. The problem is decomposed into two regions by employing the concept of taking free body. One is a circular harbor, and the other is a problem of half-open sea with a coastline subject to the impermeable (Neumann) boundary condition. It is interesting to find that the SH wave impinging on the hill can be formulated by the same mathematical model. After finding the analogy between the harbor resonance and hill scattering, focusing of the water wave inside the harbor as well as focusing in the hill scattering are also examined. Finally, two numerical examples, circular harbor problems of 60° and 180° opening entrance, are both used to verify the validity of the present formulation.  相似文献   

19.
This study is concerned with the Stokes flow of an incompressible fluid of constant density and viscosity with circular boundaries. To fully capture the circular boundary, the boundary densities in the direct and indirect boundary integral equations (BIEs) are expanded in terms of Fourier series. The kernel functions in either the direct BIE or the indirect BIE are expanded to degenerate kernels by using the separation of field and source points. Consequently, the improper integrals are transformed to series sum and are easily calculated. The linear algebraic system can be established by matching the boundary conditions at the collocation points. Then, the unknown Fourier coefficients can be easily determined. Finally, several examples including circular and eccentric domains are presented to demonstrate the validity of the present method. Five gains were obtained: (1) meshless approach; (2) free of boundary‐layer effect; (3) singularity free; (4) exponential convergence; and (5) well‐posed model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
By using the elastic–viscoelastic correspondence principle, the problems with multiple holes, cracks, and inclusions in two-dimensional anisotropic viscoelastic solids are solved for the cases with time-invariant boundaries. Based upon this principle and the existing methods for the problems with anisotropic elastic materials, two different approaches are proposed in this paper. One is concerned with an analytical solution for certain specific cases such as two collinear cracks, collinear periodic cracks, and interaction between inclusion and crack, and the other is a boundary-based finite element method for the general cases with multiple holes, cracks, and inclusions. The former considers only specific cases in infinite domain and can be used as a reference for any other numerical methods, and the latter is applicable to any combination of holes, cracks and inclusions in finite domain, whose number, size and orientation are not restricted. Unlike the conventional finite element method or boundary element method which usually needs very fine meshes to get convergence solutions, in the proposed boundary-based finite element method no meshes are needed along the boundaries of holes, cracks and inclusions. To show the accuracy and efficiency of these two proposed approaches, several representative examples are implemented analytically and numerically, and they are compared with each other or with the solutions obtained by the finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号