首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adsorption cooling system was developed and tested and various operation procedures have been tried. The experimental results show that the heat recovery operation between two adsorption beds will increase the COP by about 25% if compared with one adsorber basic cycle system. It was also proved that mass recovery is very effective for heat recovery adsorption cooling operation, which may help to obtain a COP increase of more than 10%. Theoretical analyses on the COP have been completed for various heat and mass recovery cycles, such as basic intermittent adsorption cycle, continuous two-adsorber heat recovery cycle, mass recovery cycle, mass recovery with sensible heat recovery, and mass recovery with both sensible heat and heat of adsorption recovery. The theoretical results are in good agreement with experimental values. Based upon the developed theoretical model, it is possible to predict the COP for various operation procedures of a real adsorption cooling system.  相似文献   

2.
The study investigates the performance of two-bed, silica gel-water adsorption refrigeration cycle with mass recovery process. The cycle with mass recovery can be driven by the relatively low temperature heat source. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The chiller with mass recovery process utilizes the pressure difference to enhance the refrigerant mass circulation. Cooling capacity and coefficient of performance (COP) were calculated by cycle simulation computer program to analyze the influences of operating conditions. The mass recovery cycle was compared with conventional cycle such as the single stage adsorption cycle in terms of cooling capacity and COP. The results show that the cooling capacity of mass recovery cycle is superior to that of conventional cycle and the mass recovery process is more effective for low regenerating temperature.  相似文献   

3.
In this study, computer simulation programs were developed for multi-stage condensation heat pumps and their performance was examined for CFC11, HCFC123, HCFC141b under the same condition. The results showed that the coefficient of performance (COP) of an optimized ‘non-split type’ three-stage condensation heat pump was 25–42% higher than that of a conventional single-stage heat pump. The increase in COP differed among the fluids examined. The improvement in COP was due largely to the decrease in average temperature difference between the refrigerant and water in the condensers, which resulted in a decrease in thermodynamic irreversibility. For the three-stage heat pump, the highest COP was achieved when the total condenser area was evenly distributed to the three condensers. For the two-stage heat pump, however, the optimum distribution of total condenser area varied with working fluids. For the three-stage system, splitting the condenser cooling water for the use of intermediate and high pressure subcoolers helped increase the COP further. When the individual cooling water for the intermediate and high pressure subcoolers was roughly 10% of the total condenser cooling water, the optimum COP was achieved showing an additional 11% increase in COP as compared to that of the ‘non-split type’ for the three-stage heat pump system.  相似文献   

4.
A novel cascading adsorption cooling cycle for refrigeration purposes is proposed in this paper. This cycle consists of two zeolite adsorbent beds and a silica gel adsorbent bed. The working refrigerant for the three adsorbers is water. The zeolite adsorbent bed is configured as the high temperature stage while the silica gel adsorbent bed acts as the low temperature stage. Both heat and mass recovery are carried out between the two zeolite adsorbent beds. In addition, heat is also exchanged between the zeolite adsorbent and the silica gel adsorbent beds. A lumped model is assumed for this cascading cycle. The COP for the base case is found to be 1.35, which is much higher than the COP of an intermittent cycle (about 0.5) and a two-bed combined heat and mass recovery cycle (about 0.8). However, its specific cooling power (SCP) of 42.7 W/kg is much lower than that of the intermittent cycle. The numerical results indicate that an optimal middle temperature exists for a prescribed driven temperature. The optimal COP increases with an increase in the driven temperature. However, when the driven temperature increases beyond 503 K, there is negligible change in the COP.  相似文献   

5.
The performance of a thermoacoustic refrigerator subjected to variable loading was analyzed experimentally and the data were compared with those obtained using a computational model. The computational model relies on one-dimensional cross-section-averaged equations discretized using the network analogy. The thermoacoustic refrigerator was modeled by dividing it into 1 mm long slices in the direction of the acoustic axis. The hot heat exchanger of the thermoacoustic refrigerator was maintained at ambient temperature and the temperature of the cold heat exchanger was varied to achieve temperature differences of ΔT=0, 5 and 10 K along the stack. The cooling load was measured and calculated for these temperature differences while varying the driving frequency between 30 and 65 Hz. The contribution of the progressive and stationary waves and the losses on the thermoacoustic heat flow was computed and discussed.  相似文献   

6.
A theoretical study of a novel regenerative ejector refrigeration cycle   总被引:1,自引:0,他引:1  
There has been a demand for developments of the ejector refrigeration systems using low grade thermal energy, such as solar energy and waste heat. In this paper, a novel regenerative ejector refrigeration cycle was described, which uses an auxiliary jet pump and a conventional regenerator to enhance the performance of the novel cycle. The theoretical analysis on the performance characteristics was carried out for the novel cycle with the refrigerant R141b. Compared with the conventional cycle, the simulation results show that the coefficient of performance (COP) of the novel cycle increases, respectively, by from 9.3 to 12.1% when generating temperature is in a range of 80–160 °C, the condensing temperature is in a range of 35–45 °C and the evaporating temperature is fixed at 10 °C. Especially due to the enhanced regeneration with increasing the pump outlet pressure, the improvement of COP of the novel cycle is approached to 17.8% compared with that in the conventional cycle under the operating condition that generating temperature is 100 °C, condensing temperature is 40 °C and evaporating temperature is 10 °C. Therefore, the characteristics of the novel cycle performance show its promise in using low grade thermal energy for the ejector refrigeration system.  相似文献   

7.
The work reported in this paper is focused on the performance of a thermoacoustic refrigerator under various operating conditions. The experiments were conducted with various stack geometries fabricated with epoxy glass and Mylar material. Four stacks with different pore sizes are used to evaluate the performance of the refrigerator. Stack 1 has parallel plates of Mylar material 0.12 mm thick spaced 0.36 mm apart. Stacks 2, 3 and 4 are made of epoxy glass with pores of circular cross-section having 1, 2 and 3 mm diameter, respectively. The entire resonator system was constructed from aluminium material coated with polyurethane material from inside to reduce conduction heat losses. Helium gas was used as a working fluid. The experiments were conducted with different drive ratios ranging from 1.6% to 2% with varying cooling load from 2 to 10 W. For the experiments, operating frequencies from 200 to 600 Hz with mean pressure varying from 2 to 10 bar in steps of 2 bar each were considered. The temperatures of the hot end and cold end of the heat exchangers were recorded using RTDs and a data acquisition system under various operating conditions. The coefficient of performance (COP) and relative COP (COPR) are evaluated. Results show that COP of the refrigerator rises with increase of cooling load and decreases at higher drive ratio. It was also observed that the temperature difference between the hot end and cold end of the stack is higher at 2 W cooling load for 400 Hz operating frequency. The temperature difference between the hot end and cold end of the stack was observed to be 19.4, 17.2, 14 and 12.4°C for stacks 1, 2, 3 and 4, respectively, for 10 bar mean pressure and 2 W cooling load. The temperature difference and COP of the parallel plate stack are better compared with other stack geometries.  相似文献   

8.
Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and utilization of CFCs and HCFCs. In this paper, a dual-mode silica gel–water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. This adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. The drawback of this operational mode is its poor efficiency in terms of cooling capacity and COP. Simulation results show that the optimum COP values are obtained at driving source temperatures between 50 and 55 °C in three-stage mode, and between 80 and 85 °C in single-stage, multi-bed mode.  相似文献   

9.
10.
A theoretical investigation was performed concerning the coefficient of performance (COP) of cascade refrigerating systems using N2O as refrigerant for the low temperature cascade stage and various natural refrigerants like ammonia, propane, propene, carbon dioxide and nitrous oxide itself for the high temperature stage. The basis of the comparison was a conventional R23/R134a-cascade refrigerating system for heat rejection temperatures of +55, +35 and +25 °C for air cooling, cooling tower water cooling and city water cooling, respectively. It can be stated that such an application of N2O at the primary stage and ammonia or hydrocarbons as refrigerants at the secondary stage in refrigerating systems achieves similar COP-values compared to the R23/R134a-cascade refrigerating system, whereas CO2 and N2O in a transcritical cycle in general perform worse.An application of N2O in a two-stage compression cycle with interstage injection and city water cooling at low and high interstage temperatures has a nearly equal COP as a conventional R23/R134a-cascade refrigerating system and is an interesting alternative for small laboratory refrigerating systems.  相似文献   

11.
Rapid softening of kiwi fruit while in storage at 0°C limits the marketing period for this crop and contributes to economic loss. The time required to bring fruit to optimum storage temperature is affected by delays between harvest and placing fruit in the cooling facility and by the completeness of cooling. Incomplete cooling of fruit in commercial forced-air coolers results in overall above-optimal average fruit temperatures for undesirable lengths of time and also results in a wide range of temperature among individual fruits. The half cooling time for palletized kiwi fruit packed in wooden trays with liners was 7 h in the coolers tested; thus seven-eighths cooling required 21 h. Delays of 24 h or more before the start of cooling accelerated the softening of fruit, enhanced soluble solids content, and increased the incidence of rotting and shrivelling during storage.  相似文献   

12.
A hybrid method for optimizing refrigerant distribution in evaporators is presented that involves the use of small balancing valves in each circuit along with a primary expansion device to control the overall superheat from the evaporator. The flow balancing valves could be located upstream or downstream of the evaporator. This paper presents the results of a study to investigate the benefits of this hybrid scheme for both upstream and downstream flow balancing for the case of air flow mal-distribution. In order to perform this investigation, a simulation model was developed to consider evaporator flow mal-distributions for a 10.55 kW residential R410A heat pump and then validated through comparisons of predicted results with measurements. Simulation results show that there are significant benefits in controlling the superheat of each circuit of evaporators through the hybrid–individual superheat control method. Furthermore, the upstream refrigerant flow control consistently outperforms the downstream refrigerant flow control, and recovers most of the loss in cooling capacity and COP due to non-uniform air flow distribution.  相似文献   

13.
The prototype of a novel silica gel–water adsorption chiller is built and its performance is tested in detail. The experimental results show that the refrigerating capacity (RC) and COP of the chiller are 7.15 and 0.38 kW, respectively, when the hot water temperature is 84.8 °C, the cooling water temperature is 30.6 °C, and the chilled water outlet temperature is 11.7 °C. The RC will reach 6 kW under the condition of 65 °C hot water temperature, 30.5 °C cooling water temperature and 17.6 °C chilled water temperature. The results confirm that this kind of adsorption chiller is an effective refrigerating machine though its performance is not as fine as the prediction results. Also it is well effectively driven by a low-grade heat source. Therefore, its applications to the low-grade heat source are much attractive.  相似文献   

14.
A single-stage vapour absorption refrigeration system (VARS) is tested with monochlorodifluoromethane (HCF22) as refrigerant and different absorbents: dimethylether of tetraethylene glycol (DMETEG) and dimethyl acetamide (DMA). The influence of generator temperatures in the range 75–95°C, which represents low-grade heat sources, is studied. Cooling water temperatures were varied between 20 and 30°C. Two cases of cooling water flow paths are considered, i.e. water entering either absorber or condenser, which are connected in series. For HCFC22-DMETEG, COP values in the range 0.2–0.36 and evaporator temperatures between 0 and 10°C are obtained. For HCF22-DMA, COP values in the range 0.3–0.45 and evaporator temperatures between −10 and 10°C are obtained. It is observed that HCFC22-DMETEG can work at lower heat source temperatures than HCFC22-DMA. However, at the same operating conditions HCFC22-DMA is better from the viewpoints of circulation ratio and COP. Experiments also show that at low heat source temperature, cooling water temperature has strong influence on circulation ratio but does not affect COP significantly. Preferably, cooling water should first flow through the condenser and then through the absorber in order to achieve improved overall performance.  相似文献   

15.
A steady state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump for simultaneous heating and cooling. The simulated results are found to be in reasonable agreement with experimental results reported in the literature. Such a system is suitable, for example, in dairy plants where simultaneous cooling at 4 °C and heating at 73 °C are required. The optimal COP was found to be a function of the compressor speed, the coolant inlet temperature to the evaporator and inlet temperature of the fluid to be heated in the gas cooler and compressor discharge pressure. An optimizing study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on the heat exchanger area has been carried out. Effect of heat transfer in the heat exchangers on system performance has been presented as well. Finally, a novel nomogram has been developed and it is expected to offer useful guidelines for system design and its optimisation.  相似文献   

16.
A pulse tube cooler has the advantages of long-life and low-vibration over conventional cryocoolers such as G-M and Stirling coolers because of the absence of moving parts at low temperature. On the other hand, the combination of a reservoir and orifice is indispensable to optimize the performance of pulse tube coolers. In order to make the pulse tube cooler compact for practical applications, the volume of reservoir should be minimized. This paper analyzes the effects of the reservoir volume on the thermodynamic performance of various components in a simple orifice and a double-inlet pulse tube cooler by combining a linearized model with a thermodynamic analysis. Expressions of entropy production for those components are presented. The results show that the reservoir volume has a significant influence on the entropy production in the various components when the reservoir to pulse tube volume ratio is smaller than about 5. The ratio is important to determine the minimum reservoir volume for a pulse tube cooler. Optimum settings for a double-inlet pulse tube cooler are also discussed.  相似文献   

17.
The cooling performance of a consolidated composite reactive bed made from expanded graphite impregnated with CaCl2 was experimentally assessed under different evaporation and heat sink temperatures. The compound presented a specific cooling power (SCP) higher than 1000 W kgSalt−1 at several studied conditions. The calculated coefficient of performance (COP) was about 0.35 when the amount of refrigerant consumed in the reaction was 0.80 kg kgSalt−1. Both SCP and COP changed with the cycle time, and thus, with the degree of the reaction. The synthesis time to maximise the SCP, under any studied condition, was about 5 min, and the absorbed quantity greatly varied among the different operation conditions. When compared to the time necessary to obtain an absorbed amount of 0.80 kg kgSalt−1, the synthesis time of 5 min could improve the SCP in about 15–68%, however, COP would be deployed in about 14–50%.  相似文献   

18.
The paper is aimed to develop a high performance rotary solid desiccant cooling system using a novel compound desiccant wheel (DW). The unique feature of the desiccant wheel is that it can work well under a lower regeneration temperature and have a higher dehumidification capacity due to the contribution of the new compound desiccant materials. Experimental results indicate that the novel desiccant wheel under practical operation can remove more moisture from the process air by about 20–40% over the desiccant wheel employing regular silica gel. A mathematical model that is used to predict the system performance has been validated with the test results. By integrating the desiccant wheel with evaporative cooling, heat recovery and heating for regeneration sections, a solid desiccant cooling system can be formed. Simulation results show that because of the use of the new compound desiccant, the desiccant cooling system can work under much lower regeneration temperature and have a relative high COP, thus low grade thermal energy resources, such as solar energy, waste heat, etc., can be efficiently utilized to drive such a cooling cycle.  相似文献   

19.
A system design method of thermoelectric cooler is developed in the present study. The design calculation utilizes the performance curve of the thermoelectric module that is determined experimentally. An automatic test apparatus was designed and built to illustrate the testing. The performance test results of the module are used to determine the physical properties and derive an empirical relation for the performance of thermoelectric module. These results are then used in the system analysis of a thermoelectric cooler using a thermal network model. The thermal resistance of heat sink is chosen as one of the key parameters in the design of a thermoelectric cooler. The system simulation shows that there exists a cheapest heat sink for the design of a thermoelectric cooler. It is also shown that the system simulation coincides with experimental data of a thermoelectric cooler using an air-cooled heat sink with thermal resistance 0.2515°C/W. An optimal design of thermoelectric cooler at the conditions of optimal COP is also studied. The optimal design can be made either on the basis of the maximum value of the optimal cooling capacity, or on the basis of the best heat sink technology available.  相似文献   

20.
An experimental investigation of the performance of a micro-combined cooling, heating and power (CCHP) system is described. The natural gas and LPG-fired micro-CCHP system uses a small-scale generator set driven by a gas engine and a new small-scale adsorption chiller, which has a rated electricity power of 12 kW, a rated cooling of 9 kW and a rated heating capacity of 28 kW. Silica gel–water is used as working pair in the adsorption cooling system. The refrigeration COP of the adsorption chiller is over 0.3 for 13 °C evaporation temperature. The test facility designed and built is described, which supplies better test-rig platform for cooling, heating and power cogeneration. Experimental methodology of this system is presented and the results are discussed. An energetic analysis of micro-CCHP system is performed as well. The overall thermal and electrical efficiency is over 70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号