首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
为了满足制备较厚低摩擦系数类金刚石薄膜(DLC)耐磨镀层的实际需求,对在等离子增强化学气相沉积的类金刚石薄膜(W—DLC)中掺钨进行了系统研究。研究结果表明,类金刚石薄膜掺入钨,在较宽的工艺条件范围内,都可以沉积厚度超过5μm的薄膜而不发生剥落。适当控制工艺条件和膜中钨的含量可以提高薄膜的硬度,降低磨损率,且保持低的摩擦系数和较高的沉积速率。  相似文献   

2.
纳米金刚石薄膜具有优异的性能,已在多个领域获得广泛应用.但微波等离子体化学气相沉积制备的金刚石薄膜质量却严重受沉积工艺的影响,为了深入了解沉积工艺对制备的金刚石薄膜质量的影响,本文详细研究了甲烷浓度对微波等离子体化学气相沉积( MPCVD)金刚石薄膜质量的影响,利用扫描电镜、X射线衍射、拉曼光谱以及原子力显微镜对其进行...  相似文献   

3.
电沉析条件对钛合金表面液相沉积类金刚石薄膜的影响   总被引:1,自引:0,他引:1  
沈风雷  闻荻江  王红卫 《功能材料》2005,36(8):1278-1281
在钛合金表面沉积类金刚石膜能改进钛合金的生物相容性,拓展其在人体植入材料中的应用。探讨了用液相电解沉积法在钛合金表面制备类金刚石薄膜的新方法。讨论了不同沉积条件对膜的影响。在1650和1850V时可以得到坚固的棕色膜。沉积36h后,膜厚基本不变。沉积膜的Raman谱图表明,在1650和1850V沉积得到的是类金刚石薄膜,而在2000V时无法得到类金刚石薄膜。对膜的XPS分析表明,其主要成份是碳。XPS谱还表明在1650V时得到的膜可以将钛合金表面完全覆盖,而在1850V时则不能。以SEM分析表明在1650和1850V时得到的膜是由粒径约为400nm的小颗粒组成,而在2000V时得到只是疏松结构。并对类金刚石膜及钛合金的血液相容性进行了比较。  相似文献   

4.
热丝CVD金刚石薄膜制备及碳纳米管形核作用的研究   总被引:5,自引:0,他引:5  
利用热丝化学气相沉积法(HF-CVD)进行了金刚石薄膜制备和碳纳米管形核作用的研究。获得了制备金刚石薄膜的优化工艺参数。利用碳纳米管作为形核前驱获得了高质量的金刚石薄膜,其沉积速率可达2.5μm/h,晶粒生长完善,而且没有出现聚晶现象。研究了碳纳米管涂料质量对薄膜沉积特性的影响,并对其机理进行了初步探讨。  相似文献   

5.
万军  马志斌 《材料导报》2004,18(2):23-25
评述了液相沉积(类)金刚石薄膜的研究现状,介绍了液相合成(类)金刚石薄膜的装置、液态源及薄膜的性能,分析了如何更好地提高(类)金刚石薄膜质量,并在此基础上提出了一种可能制备出高质量金刚石薄膜的脉冲电弧放电沉积装置.  相似文献   

6.
微波等离子体化学气相沉积技术制备金刚石薄膜的研究   总被引:1,自引:0,他引:1  
介绍了微波等离子体化学气相沉积法(MPCVD)制备金刚石薄膜的研究情况,重点论述了该法的制备工艺对金刚石薄膜质量的影响及其制备金刚石薄膜的应用前景。  相似文献   

7.
类金刚石薄膜内应力的测试   总被引:2,自引:0,他引:2  
采用射频-直流等离子增强化学气相沉积法制备出类金刚石薄膜,用弯曲法测定薄膜的内应力。结果表明,类金刚石薄膜中存在1~4.7GPa的压应力,沉积工艺对薄膜的内应力有很大的影响,薄膜的内应力随极板负偏压的升高而降低,陆C_2H_2气体含量的增加而增大。  相似文献   

8.
利用热丝化学气相沉积法 (HF CVD)进行了金刚石薄膜制备和碳纳米管形核作用的研究。获得了制备金刚石薄膜的优化工艺参数。利用碳纳米管作为形核前驱获得了高质量的金刚石薄膜 ,其沉积速率可达 2 5 μm/h ,晶粒生长完美 ,而且没有出现聚晶现象。研究了碳纳米管涂料质量对薄膜沉积特性的影响 ,并对其机理进行了初步探讨  相似文献   

9.
采用不同的沉积条件,通过HFCVD方法制备了四种不同质量、不同取向的CVD金刚石薄膜.讨论了薄膜退火前后的介电性能.研究了不同沉积条件和退火工艺与介电性能之间的联系.通过扫描电镜SEM、Raman光谱、XRD、I-V特性曲线以及阻抗分析仪表征CVD金刚石薄膜的特性.结果表明,退火工艺减少了薄膜吸附的氢杂质,改善了薄膜质量.获得的高质量CVD金刚石薄膜具有好的电学性能,在50V偏压条件下电阻率为1.2×1011Ω·cm,频率在2MHz条件下介电常数为5.73,介电损耗为0.02.  相似文献   

10.
氟化类金刚石(FDLC)薄膜是在传统类金刚石膜基础上发展起来的一种新型表面改性材料.本文简述了FDLC薄膜的结构、性能,重点介绍了其制备工艺,讨论了源气体的种类和退火工艺对薄膜的影响.  相似文献   

11.
类金刚石薄膜的摩擦学特性及磨损机制研究进展   总被引:9,自引:0,他引:9  
类金刚石薄膜已显示了重要的摩擦学应用价值,其中化学气相沉积的类金刚石薄膜(DLC)具有膜层致密、厚度均匀、摩擦学性能优良等特点成为广泛采用的一种沉积方法.本文介绍了气源成分、基体材料、摩擦环境、摩擦对偶、载荷及速度对化学气相沉积制备类金刚石薄膜的摩擦学特性的影响,概述了其摩擦磨损机理,同时探讨了进一步研究工作的方向.  相似文献   

12.
直流负偏压对类金刚石薄膜结构和性能的影响   总被引:3,自引:1,他引:2  
利用直流-射频-等离子体增强化学气相沉积技术在单晶硅表面制备了类金刚石薄膜,采用原子力显微镜、Raman光谱、X射线光电子能谱、红外光谱、表面轮廓仪和纳米压痕仪考察了直流负偏压对类金刚石薄膜表面形貌、微观结构、沉积速率和硬度等性能的影响。结果表明:无直流负偏压条件下,薄膜呈现有机类聚合结构,具有较低的SP3含量和硬度;叠加上直流负偏压后,薄膜具有典型的类金刚石结构特征,SP3含量和硬度得到了显著的提高;但随着直流负偏压的升高,薄膜的沉积速率和H含量逐渐降低,而SP3含量和硬度在直流负偏压为200V时出现最大值,此后逐渐降低。  相似文献   

13.
本文介绍和评述了化学气相沉积法制备人造金刚石薄膜及其进展,重点评述了反应机理,发展历史,沉积方法,补底材料,检测手段,论述了有利于形成立方晶系金刚石材料的沉积条件。  相似文献   

14.
探讨了用液相法在钛合金表面沉积制备类金刚石膜的可能性,研究了沉积膜工艺条件对膜的影响,得出了适宜的沉积条件。结果表明,通过液相法可以沉积制备得到DLC膜,但与沉积条件有着密切的关系。当电压为1600~1850V、温度为60~62℃、电极间距为8~10mm、沉积时间大于36h时,才能在钛合金表面得到完整的DLC绝缘膜。  相似文献   

15.
本文介绍和评述了化学气相沉积法制备人造金刚石薄膜及其进展。重点评述了反应机理、发展历史、沉积方法、补底材料、检测手段。论述了有利于形成立方晶系金刚石材料的沉积条件。  相似文献   

16.
搀杂氟对类金刚石薄膜的影响   总被引:2,自引:2,他引:0  
综述了氟化类金刚石薄膜(FDLC)的近期进展,重点介绍搀杂对类金刚石薄膜在结构,性能及沉积工艺上所带来的影响。  相似文献   

17.
金刚石薄膜的性质、制备及应用   总被引:35,自引:9,他引:26  
金刚石有着优异的物理化学性质,化学气相沉积金刚石薄膜的研究受到研究人员和工业界的广泛关注。通过评述金刚石薄膜的性质、制备方法及应用等方面的研究成果,着重阐述化学气相沉积金刚石薄膜技术的基本原理,分析了各种沉积技术的优、缺点。结合对金刚石薄膜应用的讨论,分析了金刚石薄膜在工业应用中存在的问题和制备技术的发展方向。分析结果表明:MWCVD法是高速率、高质量、大面积沉积金刚石薄膜的首选方法;而提高金刚石的生长速度、降低生产成本等是进一步开发刚石薄膜工业化应用所需解决的主要问题。  相似文献   

18.
采用化学气相沉积法(CVD)制备的金刚石薄膜具有接近于天然金刚石的导热性能,是目前最为理想的热沉材料。利用微波等离子体化学气相沉积法(MPCVD)制备了金刚石热沉片,并在此基础上研究了不同沉积工艺对金刚石热沉片散热性能的影响。采用扫描电子显微镜(SEM)和激光拉曼光谱(Raman)检测了薄膜的表面形貌及纯度,金刚石热沉片的导热性能则通过测量封装LED后薄膜的散热效果来进行表征。结果表明,在其他条件不变的情况下,提高生长过程中的微波输出功率、降低反应气压以及增加基片温度有利于制备出散热性能更佳的金刚石热沉片。  相似文献   

19.
脉冲激光沉积制备类金刚石薄膜的结构和光学性质   总被引:1,自引:0,他引:1  
采用脉冲激光沉积方法在Si(100)衬底上制备了类金刚石薄膜,利用椭圆偏振光谱,拉曼光谱及X光电子能谱研究了衬底温度对薄膜的结构和光学性质的影响.结果表明较低衬底温度制备的薄膜的光学常数具有典型的类金刚石特征.衬底温度的升高导致了薄膜的有序化,使得薄膜的sp3键成分改变,从而影响了薄膜的光学常数.衬底温度过高,导致薄膜严重石墨化,表面粗糙度增加,不利于制备高质量类金刚石薄膜.  相似文献   

20.
采用霍尔离子源沉积类金刚石薄膜是近年来新出现的一种方法 ,本文研究了自行研制的霍尔离子源的性能以及采用此离子源制备类金刚石薄膜及工艺参数的影响。结果表明 ,霍尔离子源在较低的电压即可起辉 ,可提供稳定的能量较低的离子束流。采用霍尔离子源沉积类金刚石薄膜的沉积速率约为 0 5nm/s。随着霍尔离子源灯丝电流的升高 ,离子源放电电压下降 ,制备的类金刚石薄膜的硬度下降。放电电流的变化对类金刚石薄膜的硬度影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号