首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 431 毫秒
1.
一种新型储氢材料─纳米炭纤维的制备及其储氢特性   总被引:1,自引:0,他引:1  
利用气相流动催化法和高压容积法对纳米炭纤维的大量制备及其储氢特性进行了研究 结果表明,利用在小型装置上优化的制备工艺参数,在反应空间扩大7倍的中型装置中可以实现纳米炭纤维的大量制备 在制备过程中加入扰流管能够改变炉管中的气流状态,从而影响纳米炭纤维的直径和产率 扰流管放置在适宜的区域,能够得到直径较细、纯净、碳源转化率达30%的纳米炭纤维 实验发现纳米炭纤维的表面处理是影响其储氢性能的主要因素,经过适当表面处理的纳米炭纤维,其储氢容量达到 10%  相似文献   

2.
一种新型储氢材料一纳米炭纤维的制备及其储氢特性   总被引:10,自引:0,他引:10  
利用气相流动催化法和高压容积法对纳米炭纤维的大量制备及其储氢特性进行研究,结果表明,利用在小型装置上优化的制备工艺参数,在反应空间扩大7倍的中型装置中可以实现纳米炭纤维的大量制备,在制备过程中加入拔流管能够改变炉管中的气流状态,从而影响纳米炭纤维的直径和产率,拔流管放置在适宜的区域,能够得到直径较细、纯净、碳源转化率达30%的纳米炭纤维,实验发现纳米炭纤维的表面处理是影响其储氢性能的主要因素,经过适当表面处理的纳米炭纤维,其储氢容量达到10%。  相似文献   

3.
通过采用不同金属催化剂进行乙烯催化裂解制备了具有不同微观结构的纳米炭纤维。利用纳米二氧化硅负载的铁、镍以及铁镍合金催化剂在适当的反应条件下分别制备了管状、实心鱼骨状以及空心鱼骨状的纳米炭纤维。由于金属催化剂与纳米二氧化硅间的强相互作用导致在低反应温度下也能达到高的反应活性,所以能够合成出高收率、小直径而且分布均匀的纳米炭纤维。不同结构的纳米炭纤维归因于金属催化剂的不同分散性以及不同的生长机理。通常利用铁催化剂进行乙烯裂解制备纳米炭纤维需要高于650℃,但是在我们的实验中发现500℃低温下利用纳米二氧化硅负载的铁催化剂进行乙烯裂解就能够合成出管状纳米炭纤维。  相似文献   

4.
用不同催化剂制备纳米炭纤维的生长机理   总被引:10,自引:0,他引:10  
研究了以Fe或Ni的催化剂采用有机物催化热解法制备的纳米炭纤维的形貌和结构。发现在两种情况下纳米炭纤维的生长机理安全不同;以Fe为催化剂纳米炭纤维基本符合气-液-固(VLS)催化生长机制(也称溶解扩散机制),而以Ni为催化剂纳米炭纤维则符合固相催化生长机制。  相似文献   

5.
纳米碳纤维的储氢性能初探   总被引:15,自引:0,他引:15  
主要阐述了流动催化剂法制备的纳米炭纤维的储氢特性,发现在室温下纳米炭纤维可以快速大量吸氢。纳米炭纤维的储氢量远远高于目前各种储氢材料的储氢容量。  相似文献   

6.
采用催化化学气相法在炭纤维表面原位生长纳米炭纤维后,再通过化学气相渗透法制备出纳米炭纤维改性C/C复合材料。采用微动摩擦磨损试验考察纳米炭纤维改性C/C复合材料的摩擦磨损性能,探讨原位生长纳米炭纤维对C/C复合材料摩擦磨损机理。结果表明,采用纳米炭纤维改性后C/C复合材料的摩擦过程更平稳,磨损量减小。纳米炭纤维与热解炭形成复合基体,这种复合基体在摩擦过程中形成高强度高模量的摩擦膜,从而影响复合材料的摩擦性能。  相似文献   

7.
磷酸亚铁锂核壳结构材料的制备和电化学性能   总被引:4,自引:0,他引:4  
制备热解炭/磷酸亚铁锂和纳米炭纤维/磷酸亚铁锂核壳结构材料,研究了电化学性能,结果表明,热解炭和纳米炭纤维包覆层能有效地降低磷酸亚铁锂材料的电阻率,大大提高材料的充放电容量和循环稳定性,与热解炭相比,纳米炭纤维具有一维结构和优异的力学性能,更适于作为磷酸亚铁锂电极材料的高效导电剂.  相似文献   

8.
制备热解炭/磷酸亚铁锂和纳米炭纤维/磷酸亚铁锂核壳结构材料, 研究了电化学性能. 结果表明, 热解炭和纳米炭纤维包覆层能有效地降低磷酸亚铁锂材料的电阻率, 大大提高材料的充放电容量和循环稳定性. 与热解炭相比, 纳米炭纤维具有一维结构和优异的力学性能, 更适于作为磷酸亚铁锂电极材料的高效导电剂.  相似文献   

9.
纳米炭纤维的储氢性能初探   总被引:6,自引:0,他引:6  
主要阐述了用流动催化剂法制备的纳米炭纤维的储氢特性,发现在室温下纳米炭纤维可以快速大量吸氢纳米炭纤维的储氢量远远高于目前各种储氢材料的储氢容量100nm左右的炭纤维的储氢容量高达10%以上(质量分数),如此高的储氢容量使其在燃料电池等方面具有厂阔的应用前景.  相似文献   

10.
安玉良  张辰  袁霞  隋宏超 《功能材料》2012,43(14):1858-1861
以炭纤维网布为基体,通过电镀工艺在炭纤维网布上形成Ni催化剂膜,采用化学气相沉积方法原位合成炭纤维网布/螺旋纳米碳纤维复合材料,采用扫描电镜(SEM)、Raman光谱和X射线衍射仪(XRD)对生长的螺旋纳米碳纤维的形态和结构进行表征。考察主要反应因素—温度对螺旋纳米碳纤维生长的影响,并就生长过程进行了讨论;对其制备出的炭纤维网布/螺旋纳米碳纤维复合材料在8.2~12.4GHz频段的电磁性能进行分析,考察其吸波性能。结果表明制备出的炭纤维网布/螺旋纳米碳纤维复合材料比单一的螺旋纳米碳纤维具有更高的电磁损耗角正切,电损耗正切值由0.7提高到3.8,表明复合材料具有较好的吸波性能。  相似文献   

11.
Lai C  Guo Q  Wu XF  Reneker DH  Hou H 《Nanotechnology》2008,19(19):195303
This paper studies the mechanism of the formation of carbon nanostructures on carbon nanofibers with Pd nanoparticles by using different carbon sources. The carbon nanofibers with Pd nanoparticles were produced by carbonizing electrospun polyacrylonitrile (PAN) nanofibers including Pd(Ac)(2). Such PAN-based carbon nanofibers were then used as substrates to grow hierarchical carbon nanostructures. Toluene, pyridine and chlorobenzine were employed as carbon sources for the carbon nanostructures. With the Pd nanoparticles embedded in the carbonized PAN nanofibers acting as catalysts, molecules of toluene, pyridine or chlorobenzine were decomposed into carbon species which were dissolved into the Pd nanoparticles and consequently grew into straight carbon nanotubes, Y-shaped carbon nanotubes or carbon nano-ribbons on the carbon nanofiber substrates. X-ray diffraction analysis and transmission electron microscopy (TEM) were utilized to capture the mechanism of formation of Pd nanoparticles, regular carbon nanotubes, Y-shaped carbon nanotubes and carbon nano-ribbons. It was observed that the Y-shaped carbon nanotubes and carbon nano-ribbons were formed on carbonized PAN nanofibers containing Pd-nanoparticle catalyst, and the carbon sources played a crucial role in the formation of different hierarchical carbon nanostructures.  相似文献   

12.
High mechanical performance carbon nanofibers are highly required for the carbon nanofiber-reinforced composites, and it is necessary to develop novel precursors for the preparation of carbon nanofibers. In this work, blends of poly(acrylonitrile-butyl acrylate mono-butyl itaconate) (co-PAN) and polyamic acid (PAA) were electrospun into aligned nanofibers and the nanofibers were converted to carbon nanofibers by thermal imidization, pre-oxidation and high-temperature carbonization. FT-IR spectroscopy was applied to monitor the chemical structures of the nanofibers before and after pre-oxidation. Tensile tests were used to characterize the mechanical properties of electrospun carbon nanofibers (ECNFs). The microstructures of ECNFs were investigated by high-resolution TEM and Raman spectroscopy. The results indicated that the ECNFs derived from blend of co-PAN/PAA with molar ratio of 6/4 and with carbonization temperature of 1400 °C possessed the highest tensile strength of 1212 MPa, which could be attributed to the ordered graphitic structures in ECNFs.  相似文献   

13.
PAN基活性炭纳米纤维的制备及其对金的吸附研究   总被引:1,自引:0,他引:1  
采用静电纺丝技术,制备了聚丙烯腈纳米纤维,并以聚丙烯腈纳米纤维为前驱体,制备了PAN基活性炭纳米纤维,并对PAN基活性炭纳米纤维吸附金的性能进行了初步研究,取得了令人满意的结果。  相似文献   

14.
A novel process was introduced in this paper for the diameter-controlling synthesis of carbon nanofibers (CNFs) in the ethanol flames. The carbon nanofibers were grown on a nanocrystalline Fe layer, which was electro-deposited on a substrate using periodic reverse (P.R.) pulse plating. It was found that the quality of the plating nanocrystalline and the corresponding carbon nanofibers was related with two plating parameters: output pulse frequency (f) and duty cycle (r). In addition to that the straight and helical carbon nanofibers were selectively synthesized by addition of different additives in plating bath. In this paper, the base-growth mechanism of carbon nanofibers was clearly discussed.  相似文献   

15.
镍催化热解乙炔制备碳纳米纤维   总被引:2,自引:0,他引:2  
在较低温度(450-800℃)下以氧化铝基板负载的镍为催化剂,催化热解乙炔合成碳纳米纤维.扫描电镜和透射电镜观察表明,反应温度决定碳纳米纤维的尺寸和结构,在550℃下制备的碳纳米纤维一般具有类似弹簧状的结构,而在700℃下制备的碳纳米纤维则偏向于片状堆积结构,并介绍了片状堆积结构的生长机理.  相似文献   

16.
New carbon nanomaterials, i.e., carbon nanotubes and nanofibers, with special physico-chemical properties, are recently studied as support for methanol oxidation reaction electrocatalysts replacing the most widely used carbon black. Particularly, carbon fibrous structures with high surface area and available open edges are thought to be promising. Platelet type carbon nanofibers, which have the graphene layers oriented perpendicularly to the fiber axis, exhibit a high ratio of edge to basal atoms. Different types of carbon nanofibers (tubular and platelet) were grown by plasma enhanced chemical vapour deposition on carbon paper substrates. The process was controlled and optimised in term of growth pressure and temperature. Carbon nanofibers were characterised by high resolution scanning electron microscopy and X-ray photoelectron spectroscopy to assess the morphological properties. Then carbon nanofibers of both morphologies were used as substrates for Pt electrodeposition. High resolution scanning electron microscopy images showed that the Pt nanoparticles distribution was well controlled and the particles size went down to few nanometers. Pt/carbon nanofibers nanocomposites were tested as electrocatalysts for methanol oxidation reaction. Cyclic voltammetry in H2SO4 revealed a catalyst with a high surface area. Cyclic voltammetry in presence of methanol indicated a high electrochemical activity for methanol oxidation reaction and a good long time stability compared to a carbon black supported Pt catalyst.  相似文献   

17.
介绍了一种用于合成碳纳米纤维的既简单又经济的方法。该方法采用乙醇作为碳源,硝酸镍,硝酸铁和氯化铁分别作为催化剂先体,铜薄片作为基底。通过这种方法,获得了大量丰富的产物。采用场发射扫描电子显微镜、透射电子显微镜、拉曼光谱仪和选区电子衍射光谱分析仪对所制备的碳纳米纤维进行了表征。实验结果表明,催化剂的形貌、尺寸对碳纳米纤维的形貌有影响。此外,通过对样品的拉曼表征,样品的石墨化程度被估算。  相似文献   

18.
Significant research has recently been aimed at quantifying the effects of carbon nanofibers and carbon nanotubes in portland cement pastes and mortars. Such efforts have shown that mechanical properties can increase with low concentrations of carbon nanofibers but have marginal improvement or are negatively affected with high concentrations. The objective of this paper is to evaluate the use of a microfine cement to enhance the efficacy of carbon nanofibers in portland cement mortar with respect to cracking resistance via enabling higher nanofiber concentrations. Experiments are performed with concentrations of carbon nanofibers up to 3% by weight of cement using either Type I/II or microfine cement. The primary test implemented was a restrained ring drying shrinkage test; unrestrained drying shrinkage tests, elastic modulus tests, and scanning electron microscopy imaging were performed to provide supplemental data to explain the observations from the restrained ring drying shrinkage tests. It was found that Type I/II cement mortars either lost performance or had insignificant gains with respect to cracking resistance, and all Type I/II mortar mixtures had losses in stiffness with the addition of high concentrations of carbon nanofibers. In contrast, microfine cement mortars had increased shrinkage cracking resistance and no loss in stiffness with increasing amounts of carbon nanofibers (up to the 3% by weight of cement tested in this research). The microfine cement mortar with 3% carbon nanofibers by weight of cement delayed the experimentally measured time of cracking in the ring test by a factor of up to 3.89. The delay in visible cracking time was attributed to microcrack bridging by the carbon nanofibers as imaged by scanning electron microscopy.  相似文献   

19.
In the present work, we report the preparation of TiO2–carbon/carbon dual nanofibers using an electrospinning technique. The dual nanofibers were synthesized using a modified side-by-side spinneret, which allowed the fabrication of the desired dual nanofiber architecture in a one-step process. A subsequent heat treatment permitted the control on the crystal structure of the synthesized dual nanofibers. Scanning electron microscopy and transmission electron microscopy results confirmed the continuity and duality of the obtained nanofibers. The difference in composition between the fibers composing the dual fibers was clearly observed by energy dispersive X-ray spectroscopy. The effect of heat treatment on crystallinity was evident on the results obtained from the X-ray diffraction and selected area electron diffraction studies; where, depending on the heat treatment conditions, clear signals for anatase and rutile phases of TiO2 were observed. Electrochemical studies suggest an improvement on the conduction properties of TiO2–carbon/carbon dual nanofibers compared to single TiO2–carbon nanofibers, attributed to the carbon nanofiber contribution attached to the TiO2 nanofibers. Based on the morphological and structural features of this novel nanostructured material, and to the electrochemical performance observed, it has a wide range of potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号