首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multilayer super-short carbon nanotubes (SSCNTs) could be prepared by tailoring raw multiwalled carbon nanotubes (MWCNTs) with mechanical-stirring and ultrasonic oxidation-cut method. The SSCNTs/polyaniline/reduced graphene oxide (SSCNTs/PANI/RGO) ternary hybrid composite was fabricated by reducing SSCNTs/PANI/GO precursor prepared by self-assembly from the complex dispersion of graphene oxide (GO) and the as-prepared SSCNTs/PANI nanocables, followed by redoping and reoxidation of the reduced PANI to restore the conducting structure of PANI in the ternary composite. The microscope images indicated that SSCNTs/PANI nanocables could uniformly distribute in the conductive network of graphene sheets and prevent the agglomeration of graphene. Such the hierarchical structure perfectly facilitates the contact between PANI for faradaic energy storage and electrolyte ions, and efficiently utilizes the double-layer capacitance of SSCNTs and graphene sheets at the electrode–electrolyte interfaces. The maximum specific capacitance of the SSCNTs/PANI/RGO composite achieved 845 F g?1, which was much higher than that of pure PANI and SSCNTs/PANI nanocables. Moreover, the ternary composite also showed the good cycling stability, retaining about 96% of its initial capacitance after 1000 cycles because of the synergistic effect and conductive network of SSCNTs/PANI nanocables and graphene sheets. Therefore, the combined effects between SSCNTs/PANI nanocables and graphene sheets taking advantage of both charging and faradaic processes could readily explain the excellent electrochemical performance for supercapacitors.  相似文献   

2.
石墨烯/聚苯胺复合材料的电磁屏蔽性能   总被引:2,自引:0,他引:2       下载免费PDF全文
采用直流电弧放电法制备高结晶性石墨烯, 利用乙醇助溶分散法得到石墨烯/聚苯胺电磁屏蔽复合材料, 研究不同掺杂比例的石墨烯/聚苯胺复合材料的电磁屏蔽性能。拉曼光谱分析表明: 由于石墨烯与聚苯胺之间的相互作用, 复合材料中聚苯胺特征峰比纯聚苯胺特征峰稍弱或向低频方向移动。复合物的电导率随石墨烯掺杂量的增加而增大, 当掺杂质量分数为25%时, 其电导率达到19.4 S/cm, 接近纯石墨烯电导率(20.1 S/cm)。频率为2~18 GHz时, 复合材料的电磁屏蔽效能随着石墨烯掺杂量和频率的增大而增强; 当石墨烯掺杂质量分数为25%时, 总屏蔽效能在2~18 GHz范围内由19.8 dB增至34.2 dB, 增加了约42%, 其中吸收部分占总屏蔽效能的比例为66%~81%, 这表明石墨烯/聚苯胺复合材料的电磁屏蔽性质是以电磁波吸收为主; 同时也说明了拥有特殊结构与特性的石墨烯是一种较好的聚苯胺填料, 在微波屏蔽与微波吸收领域将会有广阔的应用前景。  相似文献   

3.
The sandwich-like structure of reduced graphene oxide/polyaniline(RGO/PANI) hybrid electrode was prepared by electrochemical deposition. Both the voltage windows and electrolytes for electrochemical deposition of PANI and RGO were optimized. In the composites, PANI nanofibers were anchored on the surface of the RGO sheets, which avoids the re-stacking of neighboring sheets. The RGO/PANI composite electrode shows a high specific capacitance of 466 F/g at 2 m A/cm~2 than that of previously reported RGO/PANI composites. Asymmetric flexible supercapacitors applying RGO/PANI as positive electrode and carbon fiber cloth as negative electrode can be cycled reversibly in the high-voltage region of 0–1.6 V and displays intriguing performance with a maximum specific capacitance of 35.5 m F cm~(-2). Also, it delivers a high energy density of 45.5 m W h cm~(-2) at power density of 1250 m W cm~(-2). Furthermore, the asymmetric device exhibits an excellent long cycle life with 97.6% initial capacitance retention after 5000 cycles.Such composite electrode has a great potential for applications in flexible electronics, roll-up display,and wearable devices.  相似文献   

4.
Polyaniline (PANI) nanofibers grafted reduced graphene oxide (PANI–RGO) is prepared using the “grafting-from” strategy and then is incorporated into polypropylene (PP) matrix by way of the master batch-based melt mixing method. Grafted PANI nanofibers can improve the dispersion and electrical conductivity of reduced graphene oxide (RGO). The electrical conductivity of the modified RGO and its composites is not impaired by the grafted polymer, due to the conductive characteristics of PANI. The barrier action of PANI–RGO can greatly inhibit the release of flammable pyrolysis products of PP. PANI–RGO exhibits a marked flame retardancy effect on PP. The smoke release of the composites is slightly retarded. Transmission electron microscopy image and Raman spectrum of the char residue for PANI–RGO based composite indicate the formation of carbon nanofibers during combustion. The in situ formed carbon nanofibers on graphene nanosheets can enhance barrier performance against heat and mass transfer, resulting in enhanced flame retardancy.  相似文献   

5.
以自制聚苯胺水凝胶和氧化石墨烯为原料采用原位聚合法和溶液灌注法制备三维多孔结构的聚苯胺/氧化石墨烯复合材料,然后在氢碘酸的还原下制备聚苯胺/石墨烯复合材料。采用红外光谱法、场发射扫描电子显微镜和热重分析法对制备的复合材料的结构、形貌和组成进行表征,并采用三电极测试方式对其电化学性能进行测试。结果表明,氧化石墨烯的掺入能有效防止聚苯胺和氧化石墨烯的团聚和堆叠问题,获得了具有良好三维多孔结构的聚苯胺/氧化石墨烯复合物;聚苯胺/氧化石墨烯复合材料被氢碘酸还原后,得到的聚苯胺/石墨烯复合材料的热稳定性有所降低,但其比电容和导电性等有了很大的提高,在电流密度为0.5 A/g时,PANI/GO和PANI/r GO的比电容分别为240.38 F/g和321.91F/g。  相似文献   

6.
We report a facile and highly-effective method to assemble luminescent–magnetic–electrical tri-functionalities into the special-structured Janus nanofibers. Novel and brand-new flexible special-structured [coaxial nanocable]//[nanofiber] Janus nanofibers synchronously endued with tuned and enhanced luminescent–magnetic–electrical trifunctionality have been prepared via electrospinning technology using a homemade coaxis//monoaxis spinneret for the first time. Each special-structured Janus nanofiber consists of a coaxial nanocable made of Fe3O4/PVP core and Eu(BA)3phen/PVP shell as a half side with luminescent–magnetic bifunctionality and polyaniline (PANI)/PVP nanofiber as the other half side with electrically conductive functionality. The special and novel Janus nanofiber not only can guarantee effective separation of Fe3O4 nanoparticles (NPs) and PANI from rare earth complex, but also ensure the continuity of PANI in the matrix. It is satisfactorily found that the luminescent intensity of the novel special-structured Janus nanofibers respectively reaches up to 10 and 22 times higher than those of counterpart conventional [nanofiber]//[nanofiber] Janus nanofibers and composite nanofibers owing to its peculiar nanostructure. Compared with the counterpart conventional Janus nanofibers of two independent partitions, coaxial nanocable is used as one side of the special-structured Janus nanofiber instead of nanofiber, and three independent partitions are successfully realized in the special-structured Janus nanofiber, thus the interferences among various functions are further reduced, leading to the fact that more excellent multifunctionalities can be obtained. The novel Janus nanofibers possess excellent fluorescence, superparamagnetism and electric conductivity, and further, these performances can be respectively tunable via modulating the respective Eu(BA)3phen, Fe3O4 and PANI contents. The design philosophy and the construction technique for the special-structured Janus nanofibers are of universal significance for the fabrication of other multifunctional Janus nanofiber of various performances.  相似文献   

7.
利用高长径比的纤维素纳米纤丝(CNF)与片层结构的氧化石墨烯(GO)形成的CNF-GO复合水凝胶经抗坏血酸还原制备出CNF-还原氧化石墨烯(rGO)复合水凝胶材料。通过冷冻干燥法得到CNF-rGO复合气凝胶,并进一步通过苯胺单体在CNF-rGO复合气凝胶的孔道内原位聚合制备出CNF-rGO/聚苯胺(PANI)气凝胶柔性电极复合材料。研究了不同苯胺、CNF和GO的质量比对CNF-rGO/PANI气凝胶柔性电极复合材料的结构形貌和电化学性能的影响。结果表明,苯胺原位聚合后所得CNF-rGO/PANI复合气凝胶仍具有紧密的三维多孔网络结构。与rGO/PANI气凝胶电极复合材料相比,CNF-rGO/PANI气凝胶电极复合材料具有更理想的电容行为。当CNF与GO质量比为60∶40,PANI添加量为0.1 mol时,CNF-rGO/PANI气凝胶电极复合材料比电容可达85.9 Fg-1,且其电化学性能几乎不受弯曲程度的影响,展现出了良好的柔韧性和电化学性能。   相似文献   

8.
采用溶胶-凝胶法制备锂锌铁氧体(Li0.435Zn0.195Fe2.37O4,LZFO),界面聚合法制备纯聚苯胺(PANI)和PANI纳米纤维/LZFO复合材料。通过SEM、XRD、FTIR和矢量网络分析(PNA)等对材料的物相、结构和吸波性能进行了表征和分析。结果表明:制备出的样品分别为PANI、LZFO和不同配比的PANI纳米纤维/LZFO复合材料。在2~18 GHz范围内,PANI纳米纤维/LZFO复合材料的电磁波反射率<-10 dB的波段有2个,吸波性能较纯PANI和LZFO有了很大提高,并且拓宽了吸波频带,当PANI纳米纤维/LZFO复合材料中PANI纳米纤维的质量分数为10%,其综合吸波性能最佳,电磁波反射率<-10 dB的波段分别为2.5~5.5 GHz波段和14.5~16.5 GHz波段,最大吸收峰可达到-33.8 dB。而PANI和LZFO在电磁波反射率<-10 dB的波段只有1个。因此通过PANI纳米纤维接枝铁氧体,可调节电磁参数,提高材料的吸波性能。   相似文献   

9.
A method for preparing a graphene oxide/polyaniline (GO/PANI) composite electrode was developed to investigate the effect of GO doped in PANI. PANI was first prepared by the polymerisation of aniline and then dedoped by NH4OH to form emeraldine base (EB). The dedoped PANI and as-prepared GO were dissolved in N-methyl-2-pyrrolidone (NMP) to generate a homogeneous dispersion. The GO/PANI composites were redoped in HCI before use as electrode materials. These composites were characterised by Raman spectroscopy, X-ray diffraction, UV-vis adsorption spectroscopy, scanning electron microscopy, atomic force microscopy and electrochemical measurements. The GO/PANI composite electrode (containing 2.5% GO) has an initial gravimetric capacitance of 896 F g-1 at a scan rate of 5 mV s-1 and a retention life of 51% after 500 cycles, which is an improvement over that of pure PANI (23%). The results show that the synergy of GO and PANI attributes to the good electrochemical performance of the GO/PANI composite electrode.  相似文献   

10.
基于绿色可再生的剑麻纳米纤维素,采用超声分散方法制备剑麻纳米纤维素/石墨烯(CNF/G)分散液,通过机械共混法制备剑麻纳米纤维素/石墨烯/聚苯胺(CNF/G/PANI)复合材料,采用红外光谱、X射线衍射、拉曼光谱和扫描电镜对复合材料的结构和形态进行表征,采用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能,侧重研究石墨烯的种类对CNF/G/PANI复合材料电化学性能及结构的影响。结果表明,加入石墨烯纳米片(GNS),聚苯胺(PANI)和剑麻纳米纤维素(CNF)穿插于GNS中,产生较多的孔洞,复合材料的比电容最高值达到322.25 F/g,内阻仅为0.77Ω,在5 A/g的电流密度下,循环充放电1000次,复合材料的电容保持率达到76.92%。  相似文献   

11.
对氧化铈(CeO_2)进行3-氨丙基三甲氧基硅烷(APTMS)修饰得到改性氧化铈(CeO_2-APTMS),并与苯胺(An)发生接枝聚合,制备出CeO_2-APTMS为载体,负载聚苯胺(PANI)的复合材料PANI/CeO_2-APTMS。采用红外光谱、X射线衍射、热重分析及旋转圆盘电化学测试技术,将PANI/CeO_2-APTMS复合材料同未经改性PANI/CeO_2复合材料、纯PANI电化学性能进行比较。结果表明,PANI/CeO_2-APTMS中PANI接枝效果最好,而且CeO_2-APTMS表面接枝PANI与纯PANI结构相同;经过APTMS修饰CeO_2与PANI之间通过价键接枝成PANI/CeO_2-APTMS的起始分解温度在242℃左右,且在200~600℃内的分解速率最慢,PANI/CeO_2-APTMS表现出很好的热稳定性;PANI/CeO_2-APTMS复合材料修饰电极在65g/L Zn~(2+),150 g/L H_2SO_4的硫酸锌体系中,通过循环伏安测试其具有良好峰对称性以及最高阳极峰电流,极化曲线测试对比3类修饰电极时发现在不同转速下PANI/CeO_2-APTMS/GC修饰电极的析氧电位值均偏低,体现出良好的稳定性及析氧电催化活性。  相似文献   

12.
Multifunctional thermoset composites were made from polyester resin, glass fiber mats and carbon nanofiber sheets (CNS). Their flaming behavior was investigated with cone calorimeter under well-controlled combustion conditions. The heat release rate was lowered by pre-planting carbon nanofiber sheets on the sample surface with the total fiber content of only 0.38 wt.%. Electron microscopy showed that carbon nanofiber sheet was partly burned and charred materials were formed on the combusting surface. Both the nanofibers and charred materials acted as an excellent insulator and/or mass transport barrier, improving the fire retardancy of the composite. This behavior agrees well with the general mechanism of fire retardancy in various nanoparticle-thermoplastic composites.  相似文献   

13.
In this work, we present a new synthesis method for surfactant stabilized graphene (SSG) combined with polyaniline nanofiber (PANI-Nf) and apply the composite material as supercapacitor (SC) electrodes by screen-printing technique. Surfactant stabilized graphene polyaniline nanofiber composite (PANI-SSG) was synthesized by electrolytic exfoliation of graphite and subsequent interfacial polymerization. Firstly, graphite was electrolytically exfoliated in an electrolyte containing anionic surfactant. Next, ammonium peroxydisulfate initiator and hydrochloric acid were added to the graphene dispersion to form the aqueous phase for interfacial polymerization of polyaniline nanofiber. This dispersion was then added to the water-insoluble solvent phase containing aniline monomer. The polymerization only occurred at the interface of the two immiscible phases leading to polyaniline nanofiber decorated graphene structures. Characterizations by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy suggested nanocomposite formation with intermolecular π-π bonding of graphene with polyaniline nanofibers. Pastes of the materials were screen printed on stainless steel current collectors and tested for SC performance by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements with 2 M H2SO4 electrolyte using a home-built two-electrode test-cell. CV results showed redox peaks of polyaniline with wide cyclic loop, indicating large pseudocapacitance of the nanocomposite. From GCD measurement, a high specific capacitance of 690 Fg−1 at 1 Ag−1 was achieved. Therefore, PANI-SSG nano-composite prepared by electrolytic exfoliation and interfacial polymerization is a promising candidate for SC applications.  相似文献   

14.
In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.  相似文献   

15.
Abstract

Multifunctional thermoset composites were made from polyester resin, glass fiber mats and carbon nanofiber sheets (CNS). Their flaming behavior was investigated with cone calorimeter under well-controlled combustion conditions. The heat release rate was lowered by pre-planting carbon nanofiber sheets on the sample surface with the total fiber content of only 0.38 wt.%. Electron microscopy showed that carbon nanofiber sheet was partly burned and charred materials were formed on the combusting surface. Both the nanofibers and charred materials acted as an excellent insulator and/or mass transport barrier, improving the fire retardancy of the composite. This behavior agrees well with the general mechanism of fire retardancy in various nanoparticle-thermoplastic composites.  相似文献   

16.
杨博  郭磊  赵芳霞  张振忠 《材料导报》2011,25(20):74-76,79
针对低频频段(<1.5GHz)的电磁屏蔽涂层,采用快速混合法制备出导电聚苯胺纳米线,使用透射电镜(TEM)对其形貌和尺度进行表征,研究了搅拌方式对聚苯胺/聚氨酯涂层的导电性能和电磁屏蔽性能的影响。研究表明,由于磁场的作用,采用电磁搅拌法可以缩短聚苯胺聚合反应时间,合成均一的导电聚苯胺纳米线,其渗滤阈值为33.3%,含量为33.3%的聚苯胺纳米线的聚苯胺/聚氨酯涂层的电磁屏蔽性能为32.2dB,优于含量为45%的机械搅拌法制备的聚苯胺粉体,这可能是由于线性结构的导电聚苯胺在基体中能够较容易形成三维导电网络结构所致。  相似文献   

17.
为扩展石墨烯的宏观应用,制备性能优异的三维聚苯乙烯/聚苯胺/石墨烯(PS/PANI/graphene)复合微粒具有重要意义.以聚苯乙烯微粒为模板,通过2种浓度苯胺单体的原位生长得到2种聚苯乙烯/聚苯胺复合微粒,再利用氧化石墨烯与苯乙烯/聚苯胺微粒间的静电、共轭相互作用制备三维PS/PANI/graphene复合微粒.利用红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射(XRD)、热重分析(TG)对其微观形貌、结构进行表征,利用电化学测试对三维复合微粒电化学性能进行测试.结果表明,复合材料保持了聚合物微粒的基本形貌,具有三维结构,并有优异的比电容(578 F/g)和循环稳定性(循环900次,容量保持81.5%),其电性能远优于单纯石墨烯和聚苯胺.  相似文献   

18.
聚苯胺/碳纳米管的原位复合   总被引:3,自引:2,他引:3       下载免费PDF全文
通过原位溶液聚合制备了聚苯胺/碳纳米管(PANI/CNT)复合材料。采用透射电子显微镜(TEM)、紫外-可见光光谱(UV-VIS)、傅立叶变换红外光谱(FTIR)、热失重分析(TGA)及差示扫描量热法(DSC)研究了PANI/CNT复合材料的结构与性能。研究表明,苯胺(ANI)的聚合倾向于在碳纳米管(CNT)表面进行,形成PANI包覆的CNT。CNT表面PANI层的厚度随溶液中ANI含量的增加而增加;当溶液中ANI含量较低时,CNT表面PANI层厚度均匀;当ANI含量过高时,CNT表面PANI层厚度不均匀,形成一些颗粒状附着物。PANI与CNT之间主要是物理吸附;PANI/CNT复合材料的电导率远高于PANI本身。同时,PANI/CNT复合材料的耐热性远高于PANI,并受PANI含量影响。  相似文献   

19.
A novel chemical method has been developed for the fabrication of Ag nanoparticles-coated TiO2 nanofiber composites. The method involves dispersion of TiO2 nanofibers in silver salt solution under ultrasonication, followed by addition of sodium citrate as a reducing agent. The Ag-coated TiO2 composites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron microscopy (XPS). Furthermore, the photocatalytic performance was evaluated by the photocatalytic degradation of methyl orange under UV-light irradiation. It was found that the heterogeneous Ag-TiO2 composite showed a higher activity than the pure TiO2 nanofiber; the enhanced activity can be attributed to the excellent distribution and interaction of Ag nanoparticles with the TiO2 nanofiber support. A plausible mechanism for the formation of the Ag-coated TiO2 composite and reasons for the enhancement of photocatalytic activity are also discussed.  相似文献   

20.
用水热合成法和冻干操作制备石墨烯/聚苯胺/二氧化锰三元复合材料(rGO/PANI/MnO2),使用X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对其进行了表征。结果表明,用这种简单高效的方法制备的复合材料,具有相互交联的网络状结构和自支撑特性。在反应过程中MnO2与聚苯胺形成不规则的块状结构,共沉积在石墨烯自组装形成的网络片层上。这种复合材料具有良好的电容性能,比电容为388 F·g-1(0.5 A·g-1),优于单纯的石墨烯(rGO,234 F·g-1)和聚苯胺电极(PANI,176 F·g-1)。使用这种复合材料作为正极、rGO作为负极组装的一种不对称超级电容器,能在0~1.6 V范围内可逆循环,功率密度为17.48 W·kg-1时最大能量密度为13.5 Wh·kg-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号