首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
Oxidation Resistance of the Aluminide Coating Formed on Carbon Steels   总被引:6,自引:0,他引:6  
Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the steel substrate on the structure and thickness of the aluminidelayer, and on the oxidation resistance was investigated. The optimum oxidation resistance canbe achieved with a low carbon steel substrate when the intermetallic phases Fe3Al and FeAlform the surface of the aluminide layer. In this case, the Al concentration at the surface of thealuminide coating is at least ≥15 wt pct. Formation of high Al concentration phases (FeAl3 andFe2Al5) during aluminizing should be avoided as they tend to embrittle the aluminide layer andreduce its oxidation resistance.  相似文献   

2.
热浸镀铝钢经等离子体电解氧化(Plasma Electrolytic Oxidation, PEO)处理后, 表面铝镀层转化为陶瓷层. 实验对阳极电压变化、陶瓷层生长规律、涂层截面形貌和成分等进行了研究. 结果表明: 在PEO初期, 热浸铝试件的阳极电压变化趋势与纯铝试件相同, 在PEO后期电压有下降趋势. 铝镀层消耗和陶瓷层厚度增长近似为线性变化. 当铝镀层完全陶瓷化后, FeAl层参与PEO反应, 但陶瓷层生长速率变慢, 在界面处出现大量裂纹; 陶瓷层主要成分为Al、Si、O元素, 相结构主要为γ-Al2O3与莫来石相, 在PEO后期出现α-Al2O3相. 复合陶瓷层硬度呈区域性分布, 陶瓷层最高硬度可达HV1800.  相似文献   

3.
The fine structure in the Fe-Al alloy layer of a new hot dip aluminized steel (HDA) was examined by means of X-ray diffractometry (XRD), electron diffraction technique, etc. The test results indicated that the Fe-Al alloy layer of the new aluminized steel mainly composed of Fe3Al, FeAl and α-Fe (Al) solid solution. There was no brittle phase containing higher aluminum content, such as FeAl3 (59.18% Al) and Fe2Al7 (62–93% Al). The tiny cracks and embrittlement, formerly caused by these brittle phases in the conventional aluminum-coated steel, were effectively eliminated. There was no microscopic defect (such as tiny cracks, pores or loose layer) in the coating. This is favourable to resist high temperature oxidation and corrosion of the aluminized steel.  相似文献   

4.
低碳钢热浸镀铝微弧氧化陶瓷层厚度研究   总被引:4,自引:1,他引:3  
研究了影响低碳钢热浸镀铝微弧氧化陶瓷生长厚度的因素,提出了获得最大厚度的氧化时间并对其原因进行了分析,结果表明,影响陶瓷层厚度的主要因素是氧化时间,热浸镀最佳温度为720~730℃。  相似文献   

5.
The steel plates for testing obtained a clean and fresh surface after degreasing by alkali and acidity and to be protested from reoxidation by being dipped into liquid wax. The results after hot dipping experiments in lab. showed that a complete aluminized coat with a good property could be obtained under a condition of hot-dipping temperature at about 730 ℃, hot -dipping time at about 2 minutes. It was found that the transition layer was mainly composed of Fe2 Al5 intermetallic compound by SEM (Scanning Electronic Microscope) observation. Effects of elements copper and titanium in aluminum coating on adherence quality, corrosion resistance performance and thickness of the transition layer were investigated, the following results were drawn: The adherence quality is strongly enhancedby copper element and gives the best performance at the 2% mass percent content of copper, while it is almost indifferent with titanium content. The corrosion resistance property is enhanced by titanium and is deteriorated by copper, when the mass percent content of titaniumis 0.3% , the coating exhibits the best anti-corrosion performance. At present condition, both copper and titanium make transition layer thinner.  相似文献   

6.
采用包埋铝和锌的方法在镁合金AZ91D表面制备了铝-锌合金化涂层,并且利用x射线衍射、能谱分析研究了该涂层的组织和耐腐蚀性能。该涂层外层为AlMg2Zn, Mg7Zn3 和Mg17Al12 金属间化合物层;内层为Mg17Al12金属间化合物分布于α-Mg晶界。研究表明,与镁合金基体相比较在质量分数为3.5wt.% NaCl扩渗层显示出较好的耐腐蚀性能。盐雾腐蚀说明,Al-Mg-Zn合金化扩渗层对于降低腐蚀速率起到有效作用。此外,合金化扩渗层与基体的结合是冶金结合,且涂层的显微硬度显著提高。  相似文献   

7.
Plain carbon steels are not suitable for nitriding as they form an extremely brittle case that spalls off readily, and the hardness increment of the diffusion zone is small. In this research, the effect of plasma nitriding time and temperature variation on the microstructure of the pack cemented aluminized plain carbon steel is investigated. All samples were aluminized at 900 °C for 2 h; the aluminized samples were subsequently plasma nitrided at 500 °C, 550 °C and 600 °C for 2.5, 5, 7.5 and 10 h. The phases formed on the sample surface were detected by X-ray diffraction (XRD). The cross section and samples surface were investigated by optical and scanning electron microscopy (SEM). Microhardness test was conducted to determine hardness change from the surface to the sample core. Results showed that by aluminizing the steel, Fe3Al phases as well as Fe–Al solid solution were formed on the surface and some aluminum rich precipitates were formed in solid solution grain boundaries. Plasma nitriding of the aluminized layer caused the formation of aluminum and iron nitride (AlN, Fe4N) on the sample surface. Consequently, surface hardness was improved up to about eight times. By increasing the nitriding temperature and time, aluminum-rich precipitates dissociated. Moreover, due to the diffusion of nitrogen through aluminized region during ion nitriding, iron and aluminum nitrides were formed in aluminized grain boundaries. Increasing nitriding time and temperature lead to the growth of these nitrides in the grain boundaries of the substrate. This phenomenon results in the increment of sample hardness depth. Plasma nitriding of aluminized sample in low pressure chamber with nitrogen and hydrogen gas mixture reduced surface aluminum oxides which were formed in aluminizing stage.  相似文献   

8.
The corrosion protection performances of epoxy-coated Mn steel and carbon steel were evaluated by electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) analysis. EIS was performed on coated Mn steel with a scratch in a 0.1 M NaCl solution after a wet/dry cyclic corrosion test. The charge transfer resistance (R ct) and film resistance (R f) of the coated Mn steel displayed a higher value than the coated carbon steel. The increase in the charge transfer resistance and film resistance of the coated steel is due to the presence Mn in steel. SECM was conducted to estimate the corrosion protection performance of the epoxy-coated Mn steel immersed in a 0.1 M NaCl solution. It was found that dissolution of Fe2+ was suppressed at the scratch on the coated Mn steel due to the higher resistance for anodic dissolution of the substrate. SEM/EDX analysis showed that Mn was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale oxide layer of Mn in the rust of the steel, which had a beneficial effect on the corrosion resistance of the coated steel by forming protective corrosion products in the wet/dry cyclic test.  相似文献   

9.
本文介绍了铸造双相不锈钢磨损腐蚀的机理,综述了形变强化、第二相强化、热处理及微量元素合金化等强化双相不锈钢耐磨损腐蚀性能的途径。对指导双相不锈钢的材料设计、性能研究,特别是新型抗冲刷腐蚀磨损材料的应用等起到一定的指导作用。  相似文献   

10.
热浸镀铝钢的性能及用途   总被引:14,自引:3,他引:11  
为了便于研究人员和用户了解、掌握热浸镀铝钢的性能及其用途,进一步推动我国在这方面的大力发展,作者综述了热浸镀铝钢镀层的机械性能、耐腐蚀性能、抗高温氧化性能和其他性能及其在各工程领域上的应用情况,列出了部分性能指标。  相似文献   

11.
对45钢和铁素体不锈钢进行表面渗铝试验,利用金相显微镜和扫描电镜(SEM)分析了渗铝层金相组织及成分,并对渗铝前后试样进行了抗氧化性能对比试验。结果显示,45钢和铁素体不锈钢渗铝后,都具有较好的抗氧化性能,但铁素体不锈钢的抗氧化性能更强,在800℃完全可以代替316L不锈钢。  相似文献   

12.
激光重熔对热浸渗铝层组织和性能的影响   总被引:2,自引:0,他引:2  
热浸渗铝层中通常存在大量的孔洞和裂纹,严重影响渗铝钢的耐蚀性.采用JHM-1GY-400型YAG(晶体)激光器对Q235钢的热浸渗铝层进行激光熔凝处理,借助扫描电镜、电子探针、金相显微镜、X射线衍射仪、显微硬度计等仪器对激光处理前后渗铝层的显微组织、相组成及性能进行了分析.通过测定在3.5%NaCl水溶液中的极化曲线,讨论了激光熔凝处理对渗铝层耐蚀性的影响.结果表明,采用适当的激光处理工艺,可消除渗铝层中的裂纹及孔洞,渗层变得更加致密,从而使其在3.5%NaCl水溶液中的耐蚀性高于未激光处理的渗层.并且其显微组织发生了高铝ξ相(FeAl2)向低铝β2相(FeAl)的转变,导致渗层显微硬度和脆性降低,渗层综合性能得到改善.  相似文献   

13.
Surface age-hardening high-speed steel has been formed on the surface of different substrates by double glow plasma surface alloying (DGPSA) technique, which possesses many excellent properties such as high hardness, high anti-temper stability, high wear resistance, etc. The hardness of the surface alloying layer is mainly determined by the construction of alloying layer as thickness, element distribution, structure and constituent phases of the alloying layer. In this paper, composition of the alloying layer and its constituent phases were studied for different substrates after the plasma surface alloying with W, Mo and Co. The results showed that the thickness, distribution of elements, structure and constituent phases of alloying layer were influenced greatly by the carbon content of the substrate. It is found the increase in the carbon content in the sample substrate decreases the depth of the surface compound layer. The constituent phases of the surface layer were (FeCo)7 (WMo)6-type μ phase, (FeCo)2 (WMo)-type laves phase and W (Mo) solid solution for the ingot and 20 steel and MC-type carbide and M6C-type carbide for the 45 steel and the T8 steels, respectively. The surface alloying layer exhibited high hardness of 1200-1400 HV0.2.The thickness of the surface alloying layer was 120 μm for ingot, 50-95 μm for 20, 45, T8 steels. The advantage of the DGPSA is that thick alloying layer is formed without adhesion problem, almost every metal including W, Mo can be surface-alloyed without environment contamination problem.  相似文献   

14.
选取45钢和H13钢进行热浸镀铝和高温扩散处理,采用X射线衍射(XRD)、扫描电镜(SEM)、能谱仪(EDS)等微观分析手段表征镀层物相、形貌和成分。采用销盘式高温磨损试验机对比研究不同基体下镀层的干滑动高温磨损行为,并探讨其磨损机制。结果表明:扩散层均以FeAl和Fe_3Al韧性相为主,两相之间界面周围存在平行于表面的Kikendall孔洞;镀层与45钢基体过渡平缓,结合良好,而与H13钢界面之间存在颗粒聚集,导致镀层与H13钢基体结合较差;45钢镀层在400℃/50~200N具有较好耐磨性,随环境温度升高,出现轻微-严重的磨损转变;H13钢镀层在400℃磨损率较低,在600℃也仅略高于400℃;Fe-Al镀层的磨损机制以氧化轻微磨损为主,45钢镀层在600℃出现塑性挤出磨损。  相似文献   

15.
The wear behaviour of plasma sprayed coating and hard chrome plating on AISI 304 austenitic stainless steel substrate is experimentally investigated in unlubricated conditions. Experiments were conducted at different temperatures (room temp, 100 °C, 200 °C and 300 °C) with 50 N load and 1 m/s sliding velocity. Wear tests were carried out by dry sliding contact of EN-24 medium carbon steel pin as counterpart on a pin-on-disc wear testing machine. In both coatings, specimens were characterised by hardness, microstructure, coating density and sliding wear resistance. Wear studies showed that the hard chromium coating exhibited improved tribological performance than that of the plasma sprayed WC–Co coating. X-ray diffraction analysis (XRD) of the coatings showed that the better wear resistance at high temperature has been attributed to the formation of a protective oxide layer at the surface during sliding. The wear mechanisms were investigated through scanning electron microscopy (SEM) and XRD. It was observed that the chromium coating provided higher hardness, good adhesion with the substrate and nearly five times the wear resistance than that obtained by uncoated AISI 304 austenitic stainless steel.  相似文献   

16.
先对45钢表面分别进行化学镀和软氮化处理,然后进行软氮化后再化学镀镍磷试验.测量了3种方法强化后渗(镀)层的厚度、硬度和分别在150 N和100 N试验压力下渗(镀)层的耐磨性.结果表明,软氮化后再进行化学镀所得的渗(镀)层有较大的厚度、硬度和耐磨性,该复合强化方法是一种有效的表面强化方法,有较好的应用前景.  相似文献   

17.
Jie-Hao Chen 《Materials Letters》2008,62(16):2490-2492
A multi-element alloy cladding was fabricated on low carbon steel by the TIG (tungsten inert gas) process using a multi-element alloy filler. The microstructure, crystal structure, and microhardness were evaluated using an SEM (scanning electron microscope), XRD (X-ray diffraction), EDS (energy dispersive X-ray analysis), and a microhardness tester. The wear resistance was also tested. A molybdenum-rich phase with a tetragonal structure and an Fe-rich phase with a body-centered cubic structure were obtained for the single layer cladding and double layer cladding of the alloy filler, respectively. The microhardness of the double layer (Hv 800) was greater than that of the single layer (Hv 500) due to the considerable increase in the molybdenum-rich phase. The cladding layer exhibited an excellent solution strength mechanism, and the wear resistance of the cladding was distinctly enhanced.  相似文献   

18.
稀土元素La对传统的铝层的结构及其抗高温氧化性能的影响机理尚未充分定型.以低碳钢为基体,预置纯镍和Ni-La2O3复合电镀层,采用固体粉末法进行渗铝,对渗铝试样进行高温氧化试验.用光学显微镜(OM)、扫描电镜及能谱(SEM/EDAX)等方法对试样进行了分析,发现稀土元素La促进了渗铝的过程,使渗铝层中铝含量较高,质量分数为35%,并且渗层组织细小均匀,表面质量好;高温氧化后,Ni-La镀层渗铝层表面形成的氧化膜薄而致密,氧化增重较小,具有较好的抗高温氧化性能.  相似文献   

19.
为提高高温抗氧化性能,对HP40Nb钢进行了热浸镀Al-10%(质量分数)Si,并进行不同温度扩散处理,研究了不同扩散处理试样在1000℃条件下的高温氧化行为,通过SEM,EDS和XRD分析了经不同扩散处理后的渗层在高温氧化过程中的组织结构变化.结果表明:经800℃/4h扩散处理,渗层由内层(NiAl+ Cr3 Si)...  相似文献   

20.
胡洋  程学群  高瑾  贾涛  李晓刚 《材料保护》2011,44(4):64-66,9
为解决材料在液固两相流环境中的冲刷腐蚀问题,分别采用酸性化学镀镍工艺和超音速火焰喷涂技术在Q235钢基体上制备了Ni-P-SiC涂层和Ni60JH涂层,并采用冲刷腐蚀试验机研究了2种涂层在酸性浆料中的耐冲刷腐蚀性能.结果表明,在冲刷角度和温度一定的条件下,随冲蚀速度增加,2种涂层的损伤明显加剧,耐蚀性好的Ni-P-Si...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号