首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
吴巧云  朱宏平  樊剑 《工程力学》2012,29(9):117-124
钢筋混凝土结构易损性的研究大多数集中于地震烈度或地震动峰值加速度上(PGA),地震动的选取亦没有考虑近远场地震的不同,且对于房屋建筑的研究较少.因此综合考虑地震动峰值加速度及阻尼比为 5%的谱加速度,考虑近场及远场地震的不同性质,对一钢筋混凝土框架房屋进行地震易损性分析.定义了结构整体的4 个极限破坏状态,提出了基于结构极限破坏状态确定结构抗震性能水平的方法.最后基于增量动力分析(IDA)的结果,采用该方法对结构进行基于性能的地震易损性分析,得到结构的易损性曲线,对结构在不同IM 参数及不同地震动下的易损性能进行评估和对比分析.从而可以根据结构的实际地震需求从概率意义上判断结构所处的地震破坏状态,为今后震害预测提供了参考.  相似文献   

2.
王丰  李宏男 《工程力学》2018,35(12):194-202
将等效单自由度(SDOF)体系假设与Pushover分析方法相结合,建议了一种简化的增量动力分析(IDA)方法。给出损伤指数R与结构反应限值和抗震三水准的对应关系。根据结构抗震失效概率公式给出结构地震损伤概率计算方法,进一步得到结构在不同地震强度下的损伤指数期望值Re,用以评估结构的地震损伤等级。在此基础上建立了基于简化IDA的结构地震损伤评估方法。为了验证所提出的方法,按照不同场地设计了三幢结构模型,选取了典型地震动记录作为结构的水平地震动激励,对结构模型进行了IDA、地震易损性分析和地震损伤评估。通过算例分析表明,基于简化IDA的结构地震损伤评估方法计算量小,易于操作,但得到的结构损伤值较大,抗震评估结果偏于安全。  相似文献   

3.
RC核心筒结构在水平双向地震荷载作用下,结构地震响应的耦合作用会严重削弱筒体的变形能力和延性性能,加剧筒体结构破坏程度。本文引入地震动入射角来模拟结构可能遭遇到的更为客观、实际的水平双向地震激励,基于传统IDA方法,采用拉丁超立方体网络抽样法考虑地震动强度及地震动入射角对结构的共同影响,提出了多元增量动力时程分析(MIDA)方法。基于MIDA方法,利用有限元分析软件Perform-3D对20层RC核心筒结构进行多元增量动力时程分析,获取了能反映结构抗震性能的MIDA曲线,并基于性能定义出结构的四个极限性态点,进而获得结构的地震易损性曲线,对结构的易损性能进行了分析和评估。  相似文献   

4.
研究高速公路隧道基于双地震动强度参数的易损性及概率地震经济损失,对震前抗震防灾及震后急救修复意义重大。建立高速公路隧道设计基准期内概率地震经济损失评估框架,引入双地震动强度参数,采用增量动力法进行易损性分析,得到的易损性曲面与经验易损性曲线进行对比,验证了所建模型及易损性曲面的合理性;以此为基础,评估隧道设计基准期内的概率地震经济损失。结果表明,建立的基于双地震动强度参数下的易损性曲面能更准确地反映结构损伤,在高速公路隧道设计基准期内,轻微损伤造成的概率地震经济损失占比最大,中等损伤次之。该隧道概率地震经济损失评估框架可对高速公路隧道地震经济损失评估提供参考。  相似文献   

5.
场地条件是影响地下结构地震响应的关键因素之一,该文旨在研究场地均质性对于地铁车站地下结构地震易损性的影响。以两层两跨地铁车站为研究对象,基于ABAQUS/Standard软件平台建立了考虑土-结构相互作用的二维有限元分析模型。模型考虑了循环动力荷载作用下土体的非线性与钢筋混凝土的弹塑性力学行为。采用增量动力分析方法分别计算了结构在层层场地条件下与均质场地条件下结构的地震响应,并以层间位移角为损伤指标与地面峰值加速度为地震动强度指标绘制了地铁车站结构的地震易损性曲线。结果表明,层层场地条件下结构的响应均值要显著高于均质场地,但两者标准差一致。在地震动作用下,结构处于层层场地下的破坏概率要明显高于均质场地,这主要归因于层层场地中毗邻结构的土体产生了较大的剪切变形。上述结论可为地下结构基于性能的抗震设计提供科学参考。  相似文献   

6.
采用数值模拟方法,对辽宁鞍山某在役钢筋混凝土冷却塔结构的地震易损性进行了评估。应用ABAQUS软件建立了分析模型;根据结构所在的场地条件选择了一系列合理的地震动记录,以考虑地震动的不确定性。选取了材料应变和地面峰值加速度作为结构地震需求参数和强度参数,并将结构的破坏状态划分为五个等级。分别输入单向、水平双向和三向地震作用,结合增量动力时程分析所得结构响应,基于对数正态分布假设,通过回归分析建立结构的概率地震需求模型,最终得到结构的地震易损性曲线;在此基础上对结构的抗倒塌安全储备进行了评估分析。分析结果表明:水平双向地震作用下冷却塔结构的损伤概率比单向地震作用时显著增加,若仅考虑单向地震作用会与实际产生较大偏差;由安全储备分析可知该结构满足"大震不倒"的要求。  相似文献   

7.
研究地震作用下高层钢框架-混凝土核心筒结构的易损性问题。通过基于性能的静力弹塑性分析,根据结构极限损伤状态定义了混合结构地震需求参数的四个性能水平限值。考虑地震动输入的不确定性,通过弹塑性动力时程分析获得结构地震响应,建立了两个地震需求参数与地震动强度指标之间的关系,结合性能水平限值提出能有效评估结构地震响应的易损性分析方法。最后对两个不同节点连接方式的高层混合结构进行了基于性能水平限值的地震易损性分析,绘制结构的地震易损性曲线,对结构抗震性能进行评估和对比分析。  相似文献   

8.
采用概率性地震需求分析方法,建立了汶川地区典型简支梁桥的分析型地震易损性模型。基于汶川地震桥梁震后调查资料,评估了桥梁结构参数的不确定性,抽样并生成一系列桥梁的有限元模型样本。利用汶川地震实测地震波对所建立的桥梁有限元模型进行非线性动力时程分析,并记录每一组分析中桥梁构件的地震峰值响应,通过回归分析建立地震动强度和桥梁构件地震需求之间的关系。在确定桥梁不同损伤状态对应的构件极限状态后,基于对数正态分布假设生成不同损伤状态对应的地震易损性曲线,最后基于可靠度理论计算得到桥梁系统易损性的上下确界。生成的地震易损性曲线可以进一步用于地震风险评估和震后加固优先级决策。  相似文献   

9.
根据集装箱起重机(简称岸桥)结构在地震作用下的破坏表现特征,定义了4个破坏等级和3个性能水准,以门框位移角为量化指标,给出一种岸桥结构性能水准的确定方法。考虑结构和地震动的不确定性,对两台岸桥实例进行地震易损性分析,得到结构易损性曲线。分析结果表明:两台岸桥门框构件延性变形能力较差,在强震作用下的倒塌概率较大。易损性曲线明确了岸桥结构在不同地震动强度下的性能水准概率,为岸桥结构抗震性能评估和灾害分析提供理论依据。  相似文献   

10.
为评估地震作用下结构构件的损伤程度,建立基于竖向剩余承载力的损伤指标,提出钢筋混凝土柱基于易损性曲线的地震损伤评估方法。该方法对钢筋混凝土柱采用精细化分析模型,避免单自由度体系假设,通过增量动力分析获得对数正态分布形式的易损性曲线,进行地震损伤程度评估。研究表明:所提出的地震损伤评估方法,计算简单,能有效评估钢筋混凝土柱在不同地震动强度指标下的损伤程度,为震后钢筋混凝土结构的安全评估和修复加固提供了理论依据。  相似文献   

11.
基于性能的桥梁结构概率地震需求分析   总被引:2,自引:0,他引:2  
曾志和  樊剑  余倩倩 《工程力学》2012,29(3):156-162
该研究以概率地震需求分析为基础,建立了某特大桥梁结构无阻尼器和有阻尼器动力非线性模型,用增量动力分析,得到支座最大相对位移的地震响应,并定义了两个性能水准。给出了结构的易损性曲线,并对两个结构的易损性曲线进行了比较,结合地震危险性曲线,得到结构在50 年内的地震需求危险性曲线。研究结果表明:不加阻尼器时50 年内发生碰撞的超越概率接近极限超越概率,加阻尼器后能很好的满足性能水准要求;在小震中阻尼器对结构的抗震性能提高不是很明显,而在大震中能够对结构的抗震性能提高很多。  相似文献   

12.
靳聪聪    迟世春    李士杰  聂章博   《振动与冲击》2020,39(2):169-177
高土石坝抗震可靠度研究对大坝抗震防灾和震害风险研究具有重要意义。通过考虑地震动和筑坝料参数双重随机性,建立基于地震易损性和地震峰值加速度概率密度函数的高土石坝抗震可靠度模型,为研究不同设计使用年限的高土石坝抗震可靠度提供依据。通过拉丁抽样方法选取筑坝料参数样本并与选择地震动组合成样本对,选取坝顶相对震陷率作为性能参数,提出考虑抗震设防标准的高土石坝性能水平了;采用SWANDYNE Ⅱ程序进行动力计算,并根据改进云图法得到不同地震峰值加速度下坝顶相对震陷率的地震易损性三维曲面;结合糯扎渡高土石坝不同设计年限的概率分布函数与地震易损性曲面,确定不同设计年限失效概率和抗震可靠度。分析结果表明:随着设计使用年限增加,大坝各个性能水平可靠度不断减小,对于严重破坏状态下不同设计年限可靠度均能满足《水利水电工程结构可靠性设计统一标准》规范要求,说明糯扎渡高土石坝在变形方面抗震设计是合理的。  相似文献   

13.
This paper reviews the seismic probabilistic risk assessment and seismic margins studies for nuclear power plants in the United States. The techniques employed in these studies are briefly described. A few comments on the evaluation of the fragility of structures and equipment are discussed. Seismic PRA is a systematic process to evaluate the safety of nuclear power plants. In the process, it integrates all the elements such as seismic hazard, component fragility and plant system. Thus, it provides the overall view of the safety of an entire plant under a seismic event.

The major tasks of a seismic PRA such as the evaluation of hazard curves, component fragility and plant system are also present in probabilistic analyses of nonnuclear facilities. The concept and technique embodied in seismic PRA for nuclear power plants can be applied to other types of engineering facilities.  相似文献   


14.
多点地震激励下大跨连续钢构桥易损性分析   总被引:2,自引:2,他引:0       下载免费PDF全文
针对地震动存在行波效应、场地效应、不相干效应等因素,分析大跨连续钢构桥在一致地震激励输入响应时结构内力和变形会被偏估问题,考虑结构及地震动不确定性,采用蒙特卡罗方法建立一致激励与多点激励两种工况下大跨连续钢构桥-地震动系统随机样本。以桥墩位移延性比表示桥梁破坏状态阶段,对桥梁易损性进行分析,给出大跨连续钢构桥结构的易损性曲线,得到同样程度破坏的多点地震激励与一致地震激励下加速度峰值关系。  相似文献   

15.
基于能量耗散碾压混凝土重力坝地震损伤分析   总被引:2,自引:0,他引:2       下载免费PDF全文
摘 要:采用塑性损伤力学对混凝土重力坝进行非线性动力分析,通过研究塑性损伤本构中滞回曲线的特点以及地震中重力坝裂缝发展特征和结构能量耗散机理,建立了包含能量特性的大坝整体损伤评价指标。通过分析发现强震作用下坝体上部的损伤是结构的主要损伤,地震中的能量以结构阻尼耗散能量为主,混凝土损伤和塑性耗散的能量所占比例不大,但与裂缝的发展有直接关系。提出的大坝整体损伤指标可以综合的反应结构的整体损伤程度,以此对结构进行抗震设计,可以提高结构的抗震性能。  相似文献   

16.
目前,高拱坝的抗震安全性分析中仅考虑单独主震的作用,而忽略地震中可能伴随发生的多次余震,对高拱坝在主余震序列作用下的动力响应规律尚缺乏充分认识。以大岗山拱坝为例,建立了综合考虑坝体损伤非线性、横缝开合以及半无限地基辐射阻尼效应的拱坝-库水-地基有限元分析模型,并基于耐震时程法(ETA)构建主震-ETA余震序列进行高拱坝非线性动力分析。研究结果表明:ETA的计算结果与增量动力分析法(IDA)具有可比性;高拱坝的极限抗震能力在主震受损情况下将发生损失,且随主震强度增大而损失增加。最后,基于主震-ETA余震序列计算结果给出了大岗山拱坝的极限抗震能力损失曲线。  相似文献   

17.
基于性能的重力坝-地基系统地震易损性分析   总被引:4,自引:0,他引:4  
地震易损性分析是地震风险研究中的三个(地震危险性分析、地震易损性分析和地震灾害损失评估)主要方面之一,可以预测大坝-地基系统在不同等级地震荷载作用下发生各级破损的概率。采用拉丁超立方抽样法得到抽样组合样本,对重力坝-地基系统进行了非线性有限元计算,根据坝体-地基系统地震破损等级指标,给出了坝体破损、坝基交界面屈服和地震滑动的地震易损性曲线,提出了坝体-坝基系统整体的易损性评价方法,对坝体-地基系统的抗震设计、加固和维修决策提供了一个新的评价方法。  相似文献   

18.
吕大刚  刘洋  于晓辉 《工程力学》2019,36(9):1-11,24
第二代基于性能地震工程理论中的地震易损性主要是指结构构件以及非结构构件的抗震能力,与传统地震风险理论中的地震易损性定义和内涵并不相同。为了澄清二者的不一致性,首先介绍传统地震风险理论中地震易损性的定义和概率模型,然后指出第二代基于性能地震工程理论存在五个层次的地震易损性模型:地震需求易损性模型、抗震能力易损性模型、地震损伤易损性模型、地震损失易损性模型和抗震决策易损性模型,指出了这五种模型的区别及其相互关系,推导得到了地震需求易损性模型和地震损伤易损性模型分布参数的解析表达式。在此基础上,根据不同的不确定性传递路径,提出了正向PBEE和逆向PBEE的概念,以通过不同方式求解第二代基于性能地震工程理论的风险积分公式。基于地震危险性函数的近似表达式以及地震易损性模型及其分布参数的解析表达式,通过正向PBEE和逆向PBEE方法,分别得到了具有相同表达形式的工程需求参数EDP、地震损伤DM和决策变量DV三个层次的概率地震风险表达式。通过该文的研究,将传统地震风险分析理论与第二代基于性能地震工程理论统一在一致的理论框架之中。  相似文献   

19.
In this study we present a probabilistic seismic analysis of a steel frame structure to generate fragility curves and to investigate the correlation between the response modification factor and the system ductility factor. As an example, we use a five-story hypothetical steel frame structure located in New York City and designed according to the provisions specified in the ANSI standard A58.1-1982 and the AISC ASD specification. We quantify uncertainties in seismic and structure parameters that define the earthquake-structure system by choosing several representative values for each parameter. Then, by using the Latin hypercube sampling technique, we combine these representative values to establish 18 samples of the earthquake-structure system for probabilistic seismic response analysis. The nonlinear seismic analysis is performed by using the DRAIN-2D computer program.For fragility analysis, we define five limit states representing nonstructural damage to collapse of structure and then establish the probabilistic structural capacity corresponding to each limit state. From the probabilistic structural response and capacity, the limit state probabilities at various levels of peak ground acceleration can be computed and used to construct the fragility curves. For the response modification factor Rμ, we perform nonlinear and corresponding linear analyses of the 18 samples subject to earthquakes with various levels of peak ground acceleration. The correlation between the Rμ, factor and the system ductility ratio is presented. Note that this correlation is based on one steel frame structure. Additional studies are needed to establish appropriate Rμ factors for the design of steel structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号