首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The study investigates the performance of two-bed, silica gel-water adsorption refrigeration cycle with mass recovery process. The cycle with mass recovery can be driven by the relatively low temperature heat source. In an adsorption refrigeration cycle, the pressures in adsorber and desorber are different. The chiller with mass recovery process utilizes the pressure difference to enhance the refrigerant mass circulation. Cooling capacity and coefficient of performance (COP) were calculated by cycle simulation computer program to analyze the influences of operating conditions. The mass recovery cycle was compared with conventional cycle such as the single stage adsorption cycle in terms of cooling capacity and COP. The results show that the cooling capacity of mass recovery cycle is superior to that of conventional cycle and the mass recovery process is more effective for low regenerating temperature.  相似文献   

2.
An adsorption cooling system was developed and tested and various operation procedures have been tried. The experimental results show that the heat recovery operation between two adsorption beds will increase the COP by about 25% if compared with one adsorber basic cycle system. It was also proved that mass recovery is very effective for heat recovery adsorption cooling operation, which may help to obtain a COP increase of more than 10%. Theoretical analyses on the COP have been completed for various heat and mass recovery cycles, such as basic intermittent adsorption cycle, continuous two-adsorber heat recovery cycle, mass recovery cycle, mass recovery with sensible heat recovery, and mass recovery with both sensible heat and heat of adsorption recovery. The theoretical results are in good agreement with experimental values. Based upon the developed theoretical model, it is possible to predict the COP for various operation procedures of a real adsorption cooling system.  相似文献   

3.
A novel cascading adsorption cooling cycle for refrigeration purposes is proposed in this paper. This cycle consists of two zeolite adsorbent beds and a silica gel adsorbent bed. The working refrigerant for the three adsorbers is water. The zeolite adsorbent bed is configured as the high temperature stage while the silica gel adsorbent bed acts as the low temperature stage. Both heat and mass recovery are carried out between the two zeolite adsorbent beds. In addition, heat is also exchanged between the zeolite adsorbent and the silica gel adsorbent beds. A lumped model is assumed for this cascading cycle. The COP for the base case is found to be 1.35, which is much higher than the COP of an intermittent cycle (about 0.5) and a two-bed combined heat and mass recovery cycle (about 0.8). However, its specific cooling power (SCP) of 42.7 W/kg is much lower than that of the intermittent cycle. The numerical results indicate that an optimal middle temperature exists for a prescribed driven temperature. The optimal COP increases with an increase in the driven temperature. However, when the driven temperature increases beyond 503 K, there is negligible change in the COP.  相似文献   

4.
This paper presents the results of a predictive two-dimensional mathematical model of an adsorption cooling machine consisting of a double consolidated adsorbent bed with internal heat recovery. The results of a base-case, taken as a reference, demonstrated that the COP of the double bed adsorption refrigeration cycle increases with respect to the single bed configuration. However, it was verified that, in order to maximize also the specific power of the machine, the adsorbent beds must have proper thermo-physical properties.Consequently, a sensitivity analysis was carried out, studying the influence of the main heat and mass transfer parameters on the performance of the machine. The results obtained allowed us to define the adsorbent bed design that maximizes its heat and mass transfer properties, as well as the most profitable heat recovery conditions.  相似文献   

5.
A combined-cycle refrigeration system (CCRS) that comprises a conventional refrigeration and air-conditioning system using mechanical compressor (RAC/MC) and an ejector-cooling cycle (EJC) is proposed and studied. The EJC is driven by the waste heat from the RAC/MC and acts as the bottom cycle of the RAC/MC. A system analysis shows that the COP of a CCRS is significantly higher than a single-stage refrigeration system. Improvement in COP can be as high as 18.4% for evaporating temperature of the RAC/MC Te at −5°C. A prototype of the CCRS was built and tested in the present study. Experimental results show that at Te=−4.5°C, COP is improved by 14% for a CCRS. For Te at 5°C, COP can be improved by 24% for a CCRS with higher condensing temperature of the RAC/MC. The present study shows that the CCRS using the ejector-cooling cycle as the bottom cycle of the RAC/MC is viable. Further improvement in COP is possible since the prototype is not designed and operated at an optimal condition.  相似文献   

6.
Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and utilization of CFCs and HCFCs. In this paper, a dual-mode silica gel–water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. This adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. The drawback of this operational mode is its poor efficiency in terms of cooling capacity and COP. Simulation results show that the optimum COP values are obtained at driving source temperatures between 50 and 55 °C in three-stage mode, and between 80 and 85 °C in single-stage, multi-bed mode.  相似文献   

7.
In this study, computer simulation programs were developed for multi-stage condensation heat pumps and their performance was examined for CFC11, HCFC123, HCFC141b under the same condition. The results showed that the coefficient of performance (COP) of an optimized ‘non-split type’ three-stage condensation heat pump was 25–42% higher than that of a conventional single-stage heat pump. The increase in COP differed among the fluids examined. The improvement in COP was due largely to the decrease in average temperature difference between the refrigerant and water in the condensers, which resulted in a decrease in thermodynamic irreversibility. For the three-stage heat pump, the highest COP was achieved when the total condenser area was evenly distributed to the three condensers. For the two-stage heat pump, however, the optimum distribution of total condenser area varied with working fluids. For the three-stage system, splitting the condenser cooling water for the use of intermediate and high pressure subcoolers helped increase the COP further. When the individual cooling water for the intermediate and high pressure subcoolers was roughly 10% of the total condenser cooling water, the optimum COP was achieved showing an additional 11% increase in COP as compared to that of the ‘non-split type’ for the three-stage heat pump system.  相似文献   

8.
This paper describes the experiment carried out to analyze the performance of a refrigeration system in cascade with ammonia and carbon dioxide as working fluids. The effect of operation parameters, such as the evaporating temperature of the low temperature cycle, the condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and superheat degree, on the system performance was investigated. Performance of the cascade system with NH3/CO2 was compared with that of two-stage NH3 system and single-stage NH3 system with or without economizer. It was found that the COP of the cascade system is the best among all the systems, when the evaporating temperature is below −40 °C. Also, the cascade system performance is greatly affected by evaporating temperature, condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and is only slightly sensitive to superheat degree. All the experimental results indicate that the NH3/CO2 cascade system is very competitive in low temperature applications.  相似文献   

9.
In this study, an improved cooling cycle for a conventional multi-evaporators simple compression system utilizing ejector for vapour precompression is analyzed. The ejector-enhanced refrigeration cycle consists of multi-evaporators that operate at different pressure and temperature levels. A one-dimensional mathematical model of the ejector was developed using the equations governing the flow and thermodynamics based on the constant-area ejector flow model. The model includes effects of friction at the constant-area mixing chamber. The energy efficiency and the performance characteristics of the novel cycle are theoretically investigated. The comparison between the novel and conventional system was made under the same operating conditions. Also, a comparison of the system performances with environment friendly refrigerants (R290, R600a, R717, R134a, R152a, and R141b) is made. The theoretical results show that the COP of the novel cycle is better than the conventional system.  相似文献   

10.
Thermal heat driven adsorption systems have been gained considerable attention on the recent energy utilization trend. However, the drawbacks of these adsorption systems are their poor performance. It is urgently necessary to improve the system performance of the adsorption cycles. There are two major ways for the system performance improvement. One is to develop new adsorbent material well suited to low temperature heat regeneration. The other is to enhance heat and mass transfer in the adsorber/desorber heat exchanger. The objective of the paper is to investigate the system performance of an adsorption cycle. The cycle utilizes activated carbon fiber (ACF)/methanol as adsorbent/refrigerant pair. In this paper, specific cooling effect SCE and COP of the system are numerically evaluated from the adsorption equilibrium theory with different hot, cooling and chilled fluid inlet temperatures. It is confirmed that the influences of hot, cooling and chilled fluid inlet temperatures on the system performance are qualitatively similar to those of silica gel/water pair. Even though, the driving temperature levels of ACF/methanol and silica gel/water are different. There is an optimum condition for COP to reach at maximum for ACF/methanol pair. Particularly, the ACF/methanol system shows better performance with lower chilled fluid inlet temperature between −20 and 20 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号