首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文报告了不同基片偏压对磁控溅射Al-zn镀层成份的影响,用扫描电镜分析了不同偏压下沉积试样表面形貌,在3.5wt%NaCl溶液中进行了镀层试样电化学实验。  相似文献   

2.
Ni—Cu—P合金化学镀层制备及组织结构的研究   总被引:1,自引:0,他引:1  
研究了Ni-Cu-P化学镀液主要成分、pH值及时间等工艺参数对化学沉积Ni-Cu-P合金镀层分及镀速的影响。通过选择适当的镀液成分及工艺参数,得到了Cu含量从0到56.18wt%的Ni-Cu-P合金镀层。利用X射线能谱术(EDS)和X射线衍射术(XRD)研究了镀液中硫酸铜浓度对Ni-Cu-P合金镀层成分及组织结构的影响。在硫酸铜浓度低于3g/l时,Ni-Cu-P合金镀层中P含量高于7.05wt%,合金底层是非晶态结构。  相似文献   

3.
采用磁控溅射离子镀技术在贫铀表面以不同基片偏压与不同氩分压制备铝镀层,利用扫描电镜分析了镀层的表面和界面形貌,利用俄歇电子能谱仪分析了界面元素分布,利用透射电镜分析了镀层的微观结构.结果表明:钠表面脉冲偏压所得锚镀层较直流偏压所得镀层致密,脉冲偏压在-500~-1000V范围内镀层的致密性较好.铀表面脉冲偏压铝镀层与铀基体之间界面结合紧密,且存在"伪扩散层";随着脉冲偏压的提高,"伪扩散层"增宽.铝镀层为柱状结构,降低工作氩分压,可以细化铝镀层的晶粒,提高镀层的致密性.  相似文献   

4.
铀表面纳米铌镀层的组织结构与力学性能研究   总被引:1,自引:0,他引:1  
采用磁控溅射离子镀技术在贫铀表面以不同偏压制备了铌镀层,利用X射线衍射仪和扫描电镜对镀层的组织结构进行了表征,采用纳米压痕仪与摩擦磨损仪对镀层的力学性能进行了分析。结果表明:铌镀层平整致密,但存在靶材飞溅颗粒形成的镀层缺陷,铌镀层为体心立方结构,镀层存在择优取向与晶粒细化等特性且为纳米镀层;铌镀层为典型的柱状结构。铌镀层在加载卸载压力的过程中发生了一定的弹性变形和塑性变形,-500 V脉冲偏压所得铌镀层具有较好的综合力学性能,其弹性模量和纳米硬度分别为195.1 GPa,12.9 GPa,摩擦系数约为1.0。  相似文献   

5.
胡鹏飞  蒋百灵  李洪涛 《功能材料》2011,42(1):175-177,181
采用闭合场非平衡磁控溅射离子镀技术于单晶硅和M2高速钢基片上制备CrCN镀层以研究C靶电流对CrCN镀层摩擦系数的影响,并通过能谱、原子力显微镜、X射线衍射、X射线光电子能谱分析了C元素的存在状态及其对CrCN镀层组织结构的影响规律.结果表明,当碳靶电流Ic从0A增大到1-5A时,镀层摩擦系数从0.75降至0.3,镀层...  相似文献   

6.
偏压对阴极电弧离子镀AIN薄膜的影响   总被引:1,自引:0,他引:1  
在不同基体负偏压作用下,用阴极电弧离子镀等离子体物理气相沉积(PVD)方法在单晶Si(100)基片上获得六方晶系的晶态AIN薄膜。用X射线衍射仪分析了沉积膜的物相组成和晶格位向随偏压的变化。在扫描电子显微镜(SEM)下观察沉积膜的显微组织形貌。结果表明,在较小偏压下,AIN膜呈(002)择优取向,表面致密均匀;在较大偏压下,AIN膜呈(100)择优取向,表面形貌则粗糙不平,AIN薄膜的择优取向及表面形貌受到不同偏压下不同离子轰击能量的影响。  相似文献   

7.
采用X射线光电子能谱(XPS)对电沉积Ni-W合金镀层表面膜进行了分析。研究结果表明,Ni-W合金镀层表面存在一层薄的氧化膜,而钨的氧化作用远大于镍,Ni-W合金镀层中W含量的提高对耐蚀性起决定作用。  相似文献   

8.
铝合金基电沉积Ni-SiC复合镀层的结构及耐磨性研究   总被引:4,自引:0,他引:4  
利用X射线衍射技术,分析了Ni-SiC复合镀层的微观结构,同时对镀层的耐磨性能进行了研究,结果表明,(1)Ni-SiC复合镀层的结构为晶态,SiC微粒的嵌入不改变其组织结构,经过500摄氏度,2h热处理后,产生新相Ni3Si,使镀层性能下降;(2)在300摄氏度,2h热处理条件下,Ni-SiC复合镀层体积比磨损量分别是硬Cr镀层和纯Ni镀层的31%和11.6%。  相似文献   

9.
曾敏  伍智  金大志  杨卫英  李蓉 《真空》2006,43(5):47-49
本文分析了陶瓷-金属封接中二次金属化镀层厚度对陶瓷-金属封接质量的影响,提出采用X射线荧光光谱法(XRF)对二次金属化镀层厚度进行无损检测,分析了二次金属化镀层成分与含量,对二次金属化镀层的底材进行SEM分析,进行了检测用标准片的设计和标定,建立了XRF无损检测厚度方法的应用程序和校准方法。研究结果表明:采用X射线荧光光谱法,对二次金属化镀层厚度进行无损检测是可行的和可靠的;在试验的范围内(2.48-10.5μm),测量误差小于2%,RSD(相对标准偏差)小于2%。  相似文献   

10.
钢板热浸镀55%Al-Zn合金镀层的组织及其形成过程   总被引:1,自引:0,他引:1  
赵骏 《材料保护》2012,45(5):21-23,86
热镀55%Al-Zn合金(GL)的组织结构对稳定GL镀层质量、提高其性能至关重要,以往对其组织结构的变化规律研究不够。采用金相法和扫描电镜观察了GL镀层的组织结构,分析了镀层组织中各相的形成过程。结果表明:镀层由2部分组成,一层为Al-Zn合金层,一层为钢板与Al-Zn合金层之间的过渡层;Al-Zn合金层的组织包括65%左右的树枝晶、30%左右位于树枝晶间的偏析组织以及5%的富硅相粒子,过渡层主要为Zn和Si原子以置换固溶的形式溶入到FeAl3中形成的固溶体。  相似文献   

11.
AlCrSiN涂层因具有高硬度、优异的耐磨损性及抗高温氧化性而备受关注。为提高AlCrSiN涂层的性能,采用电弧离子镀技术制备了AlCrSiN涂层,研究了基体偏压对AlCrSiN涂层微观组织及力学性能的影响。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度计、划痕仪及球-盘式摩擦磨损试验机对AlCrSiN涂层的表面形貌、物相组成和力学性能进行表征。研究结果表明:不同基体偏压的AlCrSiN涂层具有B1-NaCl晶体结构和无柱状晶结构;适当提高基体偏压,可细化AlCrSiN涂层的晶粒,提高涂层的表面质量及致密性,从而提高涂层的性能;基体偏压为150V的涂层致密性最好,具有更高的硬度(3 430HV)、结合力(76N)及更好的耐磨损性能。  相似文献   

12.
This paper reports on the first study of physical and mechanical properties of reactively sputtered chromium boron nitride coatings as a function of chemical composition, bias voltage and substrate temperature. Several sets of coatings were deposited by reactive unbalanced magnetron sputtering on Si(100) substrates. The chemical composition was deduced from X-ray photoelectron spectroscopy and Auger electron spectroscopy measurements, and was found to be influenced primarily by nitrogen flow rate. The phase composition was determined using X-ray diffraction in conjunction with spectroscopic ellipsometry. Atomic force microscopy was utilized to determine surface roughness and average surface grain size. Both surface roughness and surface grain size were largely independent of the nitrogen concentration and decreased with increasing bias voltage. The nanohardness and elastic modulus of each sample were measured by nanoindentation. The hardest films were produced using −150 V bias voltage and either very low (0.5-1 sccm) or very high (12-15 sccm) nitrogen flow rates.  相似文献   

13.
基体负偏压对类金刚石涂层结构和性能的影响   总被引:1,自引:0,他引:1  
采用直流等离子体增强化学气相沉积技术(DC-PECVD),通过控制基体负偏压的变化在YG8硬质合金基体上制备一系列类金刚石涂层。选用扫描电子显微镜、原子力显微镜、拉曼光谱、X射线光电子能谱、粗糙度仪对涂层形貌和结构进行表征测试。同时,利用显微硬度计、划痕测试仪系统地分析涂层的显微硬度和界面结合性能。结果表明:随着负偏压增大,涂层表面形貌逐渐平整光滑、致密,颗粒尺寸减小及数量降低。拉曼光谱表明,涂层具有典型的类金刚石结构,涂层中sp3键含量呈先增大后减小趋势,最大值约67.9%出现在负偏压为1000V左右,负偏压过大导致sp3键含量降低。显微硬度随负偏压变化规律与sp3键基本相符,sp3键含量决定显微硬度值大小。负偏压过大对吸附离子产生反溅射作用导致涂层厚度减小。当负偏压为1100V时,涂层与基体间的界面结合性能最优。  相似文献   

14.
Titanium nitride (TiN) coatings have been successfully deposited on 304 stainless steel substrates by reactive ion beam-assisted, electron beam-physical vapor deposition (RIBA, EB-PVD). The hardness values of the TiN coatings varied from 800 to 2500 VHN depending on the processing condition. The lattice parameter and hardness variation were correlated with processing parameters such as: deposition rate, bias, ion source energies, process gas, substrate temperature, and coating composition. The hardness of the TiN coatings increased with increasing ion energy. The ion energies combined with the deposition rate were the limiting factors controlling the degree of surface texturing. Surface texturing was only observed for those coatings deposited >8 Å/s.  相似文献   

15.
In a magnetron sputtering system, the negative substrate bias voltage has been used as a basic process parameter to modify the deposition structure and properties of coatings. In this paper we report the effect of bias voltage ranging from −40 V to −90 V on nano-scaled CrN/TiN/CrN/AlN (CrTiAlN) multilayer coatings synthesized on a Mg alloy by a closed-field unbalanced magnetron sputtering ion plating system in a gas mixture of Ar + N2. The technological temperature and atomic concentration in the multilayer coatings were controlled by adjusting the current density of different metal magnetron targets and the plasma optical emission monitor. The composition, crystallographic structure, deposition model and friction coefficient of multilayer coatings were characterized by X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and ball-on-disc testing. The experimental results show that the deposition model and friction coefficient of nano-scaled CrTiAlN multilayer coatings were significantly affected by the negative bias voltage (Vb). The nitride species in multilayer coatings mainly involve CrN, AlN and TiN, and XRD analysis shows that the crystallographic structure was face-centered cubic. Under different bias voltage conditions, the multilayer coating composition shows a fluctuation, and the Al and Cr concentrations respond in the opposite sense to the bias voltage, attaining their greatest values at Vb = −70 V. The surface and cross-sectional morphology shows deposition model change from a columnar model into non-columnar model with the increase in negative bias voltage. The friction coefficient of the nano-scaled multilayer coatings at Vb = −55 V stabilize after 10 000 cycles.  相似文献   

16.
Iridium coating was produced on various substrates using a double glow plasma. The effects of bias voltage and gas pressure on orientation and microstructure of the coating were studied. The orientation, microstructure and composition of the coating were evaluated by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The results showed that iridium coatings on various substrates all exhibited the preferred (220) orientation under the same deposition conditions. The microstructure of the coating was affected by bias voltage, gas pressure and substrate effects. The bias voltages had a significant impact on the crystal orientation of the coating. The increase of bias voltage resulted in high substrate temperature and large deposition rate. An increase in the coating thickness can affect the microstructure and orientation of the coating.  相似文献   

17.
《Vacuum》2012,86(4):429-437
Iridium coating was produced on various substrates using a double glow plasma. The effects of bias voltage and gas pressure on orientation and microstructure of the coating were studied. The orientation, microstructure and composition of the coating were evaluated by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The results showed that iridium coatings on various substrates all exhibited the preferred (220) orientation under the same deposition conditions. The microstructure of the coating was affected by bias voltage, gas pressure and substrate effects. The bias voltages had a significant impact on the crystal orientation of the coating. The increase of bias voltage resulted in high substrate temperature and large deposition rate. An increase in the coating thickness can affect the microstructure and orientation of the coating.  相似文献   

18.
In the present study, authors report on the effect that substrate bias voltage has on the microstructure and mechanical properties of (Ti, Al)N hard coatings deposited with cathodic arc evaporation (CAE) technique. The coatings were deposited from a Ti 0· 5Al 0· 5 powder metallurgical target in a reactive nitrogen atmosphere at three different bias voltages: U B ?=??? 25, ?50 and ?100 V. The coatings were characterized in terms of compositional, microstructural and mechanical properties. Microstructure of the coatings was investigated with the aid of X-ray diffraction in glancing angle mode, which revealed information on phase composition, crystallite size, stress-free lattice parameter and residual stress. Mechanical properties were deduced from nano-indentation measurements. The residual stress in all the coatings was compressive and increased with increasing bias voltage in a manner similar to that reported in literature for Ti–Al–N coatings deposited with CAE. The bias voltage was also found to significantly influence the phase composition and crystallite size. At ?25 V bias voltage the coating was found in single phase fcc-(Ti, Al)N and with relatively large crystallites of ~ 9 nm. At higher bias voltages (?50 and ?100 V), the coatings were found in dual phase fcc-(Ti, Al)N and fcc-AlN and the size of crystallites reduced to approximately 5 nm. The reduction of crystallite size and the increase of compressive residual stress with increasing bias voltage both contributed to an increase in hardness of the coatings.  相似文献   

19.
Chromium nitride coatings with and without a carbon content being assigned as CrCN and CrN were prepared by cathodic arc evaporation. The effect of negative substrate bias voltages (10-300 V) on the microstructure, phase composition and morphology of the coating surface was studied. X-ray diffraction data show that almost all coatings crystallized in the cubic structure with (111) and (200) diffraction lines appearing only for low negative bias voltage and a (220) diffraction line being present for the coatings deposited at higher negative bias voltages. For CrN coatings obtained at −300 V a hexagonal structure was also observed. In case of CrCN coatings the (220) diffraction line shows much higher intensity than in case of CrN coatings and was significantly broadened. On the surface of the coatings a large number of macroparticles of different size was observed. An increase of bias voltage causes a reduction of the areal density of macroparticles and a decrease of the mean surface roughness Ra.  相似文献   

20.
MoS2 coatings were prepared using an unbalanced bipolar pulsed DC (direct current) magnetron sputtering apparatus under different targets, cathode current densities, power modes and bias voltages. The morphology, structure and growth characteristics of MoS2 coatings were observed and identified respectively by scanning electron microscopy, X-ray diffractometry and mass spectrometry. The results show that MoS2 coatings evolve with the (002) basal plane parallel to the surface by using cold pressed target with lower density, lower cathodic current density, bipolar pulse DC power and minus bias voltage, whereas the coatings deposited under hot pressed target, higher cathodic current density, simple DC power and positive bias voltage have the (002) basal plane perpendicular to the surface. The influence of deposition conditions on the crystal structure of MoS2 coating is implemented by altering its growth rate and the energy of sputtering-deposition particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号