首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
碳纤维面板铝蜂窝夹层结构低温热导率测试研究   总被引:4,自引:3,他引:1  
对碳纤维面板铝蜂窝夹层结构T、L、W3个方向的低温热导率进行了测试研究。得到了碳纤维面板铝蜂窝夹层结构热导率的性能与温度变化曲线。在实验的基础上,讨论分析了碳纤维面板铝蜂窝夹层结构热导率的传热机理和影响因素。通过实验和比对,找出了具有普遍性的规律,为推算蜂窝夹层结构低温热导率数据提供了参考依据。  相似文献   

2.
给出了网状面板蜂窝夹层结构的低温膨胀测试结果,对两个方向的热膨胀系数进行了比较,分析讨论了网状面板蜂窝夹层结构热膨胀的影响因素,找出了减小热膨胀系数的主要环节。  相似文献   

3.
正夹层结构是由面板、芯材及胶层组成的轻型结构,已经被广泛应用于航空、航天等领域。传统芯材有蜂窝、泡沫等,其中蜂窝夹层结构最为常见。然而蜂窝孔格与面板形成的密闭结构,低温时容易水汽凝结甚至结冰使蜂窝孔格裂开,结构强度降低甚至结构失效。  相似文献   

4.
Nomex蜂窝夹层结构弯曲刚度温度相关性的力学建模   总被引:1,自引:0,他引:1       下载免费PDF全文
胶黏剂粘接性能下降导致的面板与蜂窝芯分离是Nomex蜂窝夹层结构在高温下力学性能发生退化的主要原因。为此定义了胶黏剂的等效脱粘系数为温度升高引起蜂窝夹层结构弯曲刚度下降的损伤变量,并引入面板和蜂窝芯弹性模量的温度保持系数,建立了蜂窝夹层结构弯曲刚度温度相关性的力学模型。经外伸梁三点弯曲法试验校验,所建力学模型计算值与试验值的误差在15%内,可以较好地实现蜂窝夹层结构在高温下的弯曲刚度预报。研究成果可以用于软夹心蜂窝夹层结构在高温下弯曲刚度的估算。   相似文献   

5.
碳纤维蜂窝夹层结构动特性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
对碳纤维蜂窝夹层结构的动力学问题进行了深入分析。将碳纤维网格表面等效为正交异性薄板,铝蜂窝夹芯按蜂窝实际受力情况和尺寸大小等效为三维正交异性体,并考虑到为了防止失稳破坏而进行的蜂窝局部加密、碳纤维表板加厚及结构局部加强。所建模型经复杂结构有限元方法分析,结果和试验相吻合,表明等效模型是合理的,方法是正确的。  相似文献   

6.
针对碳纤维增强树脂复合材料(CFRP)蒙皮-铝蜂窝夹层结构,使用半球头式落锤冲击试验平台进行了低速冲击载荷下蜂窝芯单元尺寸对夹层板冲击性能影响的试验探究,并基于渐进损伤模型、内聚力模型和三维Hashin失效准则,在有限元仿真软件ABAQUS中建立了含蒙皮、蜂窝芯、胶层的CFRP蒙皮-铝蜂窝夹层板精细化低速冲击仿真模型,仿真结果与试验结果吻合较好。利用该数值模型进一步探究了蜂窝芯高度、蒙皮厚度和蜂窝芯壁厚等结构参数对于蜂窝夹层板低速冲击吸能效果的影响。结果表明:增大铝蜂窝芯的单元边长,会减小蜂窝夹层板的刚度,提升夹层板的吸能效果;芯层高度对夹层板的刚度及抗低速冲击性能影响较小;增大蜂窝夹层板的蒙皮厚度,可以提高夹层板的刚度,但会降低夹层板的吸能效果;增大蜂窝芯的壁厚,可以提高夹层板的刚度和抗低速冲击性能。   相似文献   

7.
张超  张军 《振动与冲击》2020,39(12):265-271
铝蜂窝夹芯复合结构在航空工业、高速列车及汽车车体中得到越来越多的应用,其隔声性能对车内及机舱噪声有重要影响。建立了碳纤维铝蜂窝夹芯复合结构有限单元模型,用有限单元法计算了结构在声载荷激励下的响应,并计算分析了复合结构的隔声性能,分析了碳纤维复合面板厚度、面板层数、铺设角度、铝蜂窝芯层的厚度、铝蜂窝壁厚对隔声性能的影响。研究结果表明,面板采用碳纤维复合结构时,在小于1 000 Hz的低频段,相同面板厚度的铝蜂窝复合结构隔声性能比全铝合金材料的铝蜂窝夹芯复合结构有所降低,而且在高频段会出现隔声量更低的隔声低谷;相较于铝合金面板,复合结构的面板采用碳纤维复合材料时,能够实现整体结构轻量化也提高复合结构的隔声性能;各层之间按相对90°铺设时复合结构隔声性能最好;随着面板厚度的增加复合结构隔声性能增加,面板层总厚度不变的情况下,单层面板或者过多的层数都会使复合结构隔声性能降低。  相似文献   

8.
蜂窝夹层结构的低温力学性能   总被引:2,自引:0,他引:2  
以选定的一种蜂窝夹层结构为例,对其低温力学性能即拉伸,压缩,剪切等进行了各种外界环境包装温度,粒子辐照,紫外辐照,冷热循环等影响前后的性能测试和研究,在大量试验的基础上,通过理论分析,找出了影响其低温力学性能的主要因素和变化规律,建立了用已知参数或常温参数推算蜂窝夹层结构低温力学性能的数学模型和计算公式,该模型的建立对于蜂窝夹层结构低温力学性能的设计具有较重要的指导意义。  相似文献   

9.
无孔蜂窝夹层结构脱粘剥离应力分析   总被引:1,自引:0,他引:1       下载免费PDF全文
将建筑中的弹性地基上板的理论用于蜂窝夹层结构分析, 得出了蜂窝夹层结构面板的变 形和夹芯中的应力分布, 建立了有脱粘缺陷蜂窝结构的缺陷容限。   相似文献   

10.
提出蜂窝夹层复合材料不确定性参数识别方法。采用三明治夹芯板理论建立铝蜂窝夹层结构的初始有限元模型,其中芯层等效弹性参数由均匀化方法计算。据芯层结构及相对灵敏度分析选存在不确定性且对动态特性敏感性较大的面外剪切模量及面板厚度为待识别参数。对6块铝蜂窝复合材料板进行自由-自由边界条件下动态试验,获得试验模态参数的均值及标准差。据试验结果采用所提方法识别铝蜂窝夹层板不确定性参数。结果表明,对存在不确定性参数的铝蜂窝夹层复合材料用该方法能准确识别铝蜂窝夹层板不确定参数的均值及标准差。并建立具有准确统计意义的动力学模型。  相似文献   

11.
为研究等腰梯形蜂窝芯玻璃钢夹芯板传热机制,利用导热仪对夹芯板的传热性能进行了实验测试与模拟研究。结果表明:夹芯板稳态导热系数模拟结果与Swann and Pittman经验公式的计算结果相吻合,验证了数值计算胞体平面模型的合理性;Part2为夹芯板稳态传热的主要构件,Part2胞壁厚度与边长对夹芯板导热系数有显著影响,Part2高度、Part1与Part3厚度及面板厚度对夹芯板导热系数的影响偏弱;同时,若仅需降低夹芯板的导热系数,而忽略对夹芯板静力学性能要求,应该更换蜂窝芯层材料;若需夹芯板同时满足隔热性能与静力学性能,多层蜂窝芯夹芯板是很好的选择。   相似文献   

12.
蜂窝夹芯板的热学与力学特性分析   总被引:12,自引:5,他引:7       下载免费PDF全文
采用细观力学的分析方法, 从蜂窝夹芯复合材料板中选取代表性的细观胞元, 应用周期性条件、三维有限元方法分析了细观胞元的温度场和应力场, 计算得到宏观热学与力学参数, 还考虑了蜂窝芯内部的辐射换热, 讨论了蜂窝芯对夹芯板宏观导热系数、刚度及热膨胀系数的影响。结果表明: 沿厚度方向导热系数与传统算法比较有较大差异, 刚度参数除D12外都可以由传统公式近似, 而计算热膨胀系数时不能忽略芯层热膨胀的影响。   相似文献   

13.
为研究铝合金蜂窝夹层板水下爆炸冲击波载荷作用的动态响应及抗冲击性能,利用非药式水下爆炸冲击波加载装置对气背固支5A06铝合金夹层板及具有相同面密度的单层板进行水下冲击波加载试验。利用高速相机结合三维数字散斑技术(DIC)对夹层板后面板动态响应进行实时测量,获得夹层板气背面受水下冲击波作用的动态响应历程及变形毁伤模式,比较分析铝合金蜂窝夹层板抗冲击防护性能。结果表明,较相同面密度的单层板,蜂窝夹层板受水下冲击波载荷作用的芯层压缩能有效减少气背面板的塑性变形,提高夹层结构整体抗冲击性能。  相似文献   

14.
《Composites Part A》2001,32(9):1189-1196
This paper outlines a finite element procedure for predicting the behaviour under low velocity impact of sandwich panels consisting of brittle composite skins supported by a ductile core. The modelling of the impact requires a dynamic analysis that can also handle non-linearities caused by large deflections, plastic deformation of the core and in-plane degradation of the composite skins. Metal honeycomb, frequently used as a core material, is anisotropic and requires a non-standard approach in the elasto-plastic part of the analysis. A suitable yield criteria based on experimental observations is proposed. Comparisons of experimental and finite element responses are shown for sandwich panels with carbon fibre skins and aluminium honeycomb cores.  相似文献   

15.
With the growing interest to use composite materials and honeycomb sandwich panels in industrial fields, much attention is devoted to the development of non-destructive testing (NDT) techniques for the detection and evaluation of defects. In this work, scanning pulsed eddy current (PEC) was investigated and two features, representing the magnetic field intensity and conductivity, were used to characterise the different types of defects in carbon fibre reinforced plastics (CFRP) laminates and honeycomb sandwich panels. The experimental results show that the low energy impact from 4 J to 12 J, conductive and non-conductive insert defects can be effectively detected and evaluated using the proposed methods. The effectiveness was verified and the advantages of scanning PEC were addressed through comparative studies with flash thermography and shearography.  相似文献   

16.
Finite element simulation is employed to analyse the behaviour of clamped sandwich panels comprising equal thicknesses mild steel plates sandwiching an aluminium honeycomb core when subject to blast loadings. Pressure-time histories representative of blast loadings are applied to the front plate of the sandwich panel. The FE model is verified using the experimental test results for uniform and localised blast loading in the presence of a honeycomb core and with only an air gap between the sandwich plates. It is observed that for the particular core material, the load transfer to the back plate of the panel depends on the load intensity, core thickness and flexibility of the sandwich panels.  相似文献   

17.
The response and energy absorption capacity of cellular sandwich panels that comprises of silk-cotton wood skins and aluminum honeycomb core are studied under quasi-static and low velocity impact loading. Two types of sandwich panels were constructed. The Type-I sandwich panel contains the silk-cotton wood plates (face plates) with their grains oriented to the direction of loading axis and in the case of Type-II sandwich panel, the wood grains were oriented transverse to the loading axis. In both of the above cases, aluminum honeycomb core had its cell axis parallel to the loading direction. The macro-deformation behavior of these panels is studied under quasi-static loading and their energy absorption capacity quantified. A series of low velocity impact tests were conducted and the dynamic data are discussed. The results are then compared with those of quasi-static experiments. It is observed that the energy absorption capacity of cellular sandwich panels increases under dynamic loading when compared with the quasi-static loading conditions. The Type-I sandwich panels tested in this study are found to be the better impact energy absorbers for low velocity impact applications.  相似文献   

18.
This paper presents results from a test developed to simulate the water impact (slamming) loading of sandwich boat structures. A weighted elastomer ball is dropped from increasing heights onto rigidly supported panels until damage is detected. Results from this test indicate that honeycomb core sandwich panels, the most widely used material for racing yacht hulls, start to damage due to core crushing at impact energies around 550 J. Sandwich panels of the same areal weight and with the same carbon/epoxy facings but using a novel foam core reinforced in the thickness direction with pultruded carbon fibre pins, do not show signs of damage until above 1200 J impact energy. This suggests that these will offer significantly improved resistance to wave impact. Quasi-static test results cannot be used to predict impact resistance here as the crush strength of the pinned foam is more sensitive to loading rate than that of the honeycomb core.  相似文献   

19.
In this paper, an analytical model for perforation of composite sandwich panels with honeycomb core subjected to high-velocity impact has been developed. The sandwich panel consists of a aluminium honeycomb core sandwiched between two thin composite skins. The solution involves a three-stage, perforation process including perforation of the front composite skin, honeycomb core, and bottom composite skin. The strain and kinetic energy of the front and back-up composite skins and the absorbed energy of honeycomb core has been estimated. In addition, based on the energy balance and equation of motion the absorbed energy of sandwich panel, residual velocity of projectile, perforation time and projectile velocity have been obtained and compared with the available experimental tests and numerical model. Furthermore, effects of composite skins and aluminium honeycomb core on perforation resistance and ballistic performance of sandwich panels has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号