首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixture of calcium carbide residue and fly ash (CRFA) is an innovative new binder for concrete instead of using ordinary Portland cement (OPC). Therefore, this study aims at investigating the bond interaction between common steel reinforcing bars and the aforementioned concrete. To this end, both CRFA and OPC concretes using crushed limestone and recycled concrete aggregate (RCA) as a coarse aggregate were prepared to investigate the bond strength of smooth and deformed bars by pull-out tests. The bond stress−slip relationships were also identified to determine the effects of CRFA binder and RCA on the bond strength behavior. The results indicate that the values the of bond-slip behavior and bond strengths of steel bar in CRFA concretes are similar to those embedded in OPC concrete. Moreover, the bond strength was significantly affected by RCA and the types of steel bar. Although the concretes had the same compressive strengths, the deformed bar embedded in CRFA concrete with RCA had a lower bond strength than the one with crushed limestone. However, the reduction in bond strength of the CRFA concrete with RCA was still less than that of OPC concrete with RCA. For the CRFA concretes, the bond strengths of the deformed bars were approximately 1.7–3.6 times higher than that of smooth bars.  相似文献   

2.
This paper summarizes the results of an experimental investigation into the bond behavior between recycled aggregate concrete (RAC) and deformed steel rebars, with the main variables being the recycled coarse aggregate replacement ratio (RCAr) and water-to-cement ratio of the concrete mixture. The investigation into splitting cracking strength indicates that the degradation of the bond splitting tensile stress of the cover concrete was affected by not only the roundness of the coarse aggregate particles but also the weak interfacial transition zone (ITZ) between the cement paste and the RCA that has a more porous structure in the ITZ than normal concrete. In this study, a linear relationship between the bond strength and the density of the RCA was found, but the high compressive strength reduced the effects of the parameters. To predict the bond strength of RAC using the main parameters, a multivariable model was developed using nonlinear regression analysis. It can be inferred from this study that the degradation characteristic of the bond strength of RAC can be predicted well, whereas other empirical equations and code provisions are very conservative.  相似文献   

3.
In this paper the bond behavior of recycled aggregate concrete was characterized by replacing different percentages of natural coarse aggregate with recycled coarse aggregate (20, 50 and 100 %). The results made it possible to establish the differences between the conventional concrete bond strength and the recycled concrete bond strength depending on the replacement percentage. It was thus found that bond stress decreases with the increase of the percentage of recycled coarse aggregate used. In order to define the influence of recycled aggregate content on bond behavior, normalized bond strength was calculated taking into account the reduced compressive strength of the recycled concretes. Finally, using the experimental results, a modified expression for maximum bond stress (bond strength) prediction was developed, taking into account replacement percentage and compressive strength. The obtained results show that the equation proposed provides an experimental value to theoretical prediction ratio similar to that of conventional concrete.  相似文献   

4.
5.
为了探究再生粗骨料取代率对钢管与再生混凝土界面粘结强度及破坏机理的影响, 设计15个圆钢管再生混凝土和9个方钢管再生混凝土短柱试件, 以混凝土强度等级和长径比为变化参数分组进行取代率的影响分析. 通过推出试验, 获取荷载-滑移曲线的特征点参数, 回归得到极限粘结强度的计算公式. 从界面耗能、粘结抗剪刚度、损伤等角度分析了取代率对其内在失效机理的影响. 研究结果表明:极限粘结强度拟合公式计算值与试验实测值吻合较好;再生粗骨料取代率变化对钢管再生混凝土接触界面粘结失效过程的耗能能力影响不大;而界面弹性粘结剪切刚度却随着取代率的增加而降低;剪切刚度退化速度则相反, 随着取代率的增加而加快;再生粗骨料粘附的水泥基和内部裂纹会加快钢管再生混凝土界面的粘结损伤过程.  相似文献   

6.
The use of recycled aggregate from construction and demolition waste (CDW) as replacement of fine and coarse natural aggregate has increased in recent years in order to reduce the high consumption of natural resources by the civil construction sector. In this work, an experimental investigation was carried out to investigate the influence of steel fiber reinforcement on the stress–strain behavior of concrete made with CDW aggregates. In addition, the flexural strength and splitting tensile strength of the mixtures were also determined. Natural coarse and fine aggregates were replaced by recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) at two levels, 0% and 25%, by volume. Hooked end steel fibers with 35 mm of length and aspect ratio of 65 were used as reinforcement in a volume fraction of 0.75%. The research results show that the addition of steel fiber and recycled aggregate increased the mechanical strength and modified the fracture process relative to that of the reference concrete. The stress–strain behavior of recycled aggregate concrete was affected by the recycled aggregate and presented a more brittle behavior than the reference one. With the addition of steel fiber the toughness, measured by the slope of the descending branch of the stress–strain curve, of the recycled concretes was increased and their behavior under compression becomes similar to that of the fiber-reinforced natural aggregate concrete.  相似文献   

7.
This paper deals with the bond between steel reinforcement and recycled aggregate concrete, including Electric arc furnace (EAF) slag as full replacement of natural coarse aggregates. Pull-out tests were carried out according to RILEM standard on specimens made with six concrete mixtures, characterized by different w/c ratios and types of aggregates. Plain and ribbed steel reinforcement bars were used to observe the influence of steel roughness. Experimental bond-slip relationships were analyzed, and results show similar bond mechanisms between the reference and EAF concrete specimens. Significant bond strength enhancement is observed in concretes with low w/c ratio, when EAF slag is used as recycled coarse aggregate. Experimental results in terms of bond strength were also compared to analytical predictions, obtained with empirical formulations.  相似文献   

8.
为深入研究再生混凝土的破坏形态和内部裂纹扩展情况与普通混凝土之间的差异,以不同再生粗骨料(RCA)取代率的再生混凝土为研究对象,利用Phoenix v | tome | x s240微焦点工业CT获取再生混凝土加载到90%预估破坏荷载的二维扫描图像,借助Photoshop CS6图像处理软件,对材料内部破坏裂纹进行提取,进而基于分形几何理论,以分形维数及多重分形谱表征裂纹的分形扩展规律,建立分形维数和多重分形谱特征参数与RCA取代率和再生混凝土抗压强度的关系。结果表明:再生混凝土的细观受力破坏模式与普通混凝土不同,其受力破坏形态不仅取决于粗骨料与水泥浆体的界面黏结强度,还取决于RCA自身性能,当裂纹发展至天然粗骨料或强度较高的RCA时会绕过骨料表面继续发展,发展至强度较低的RCA时会贯穿骨料;分形维数可定量描述混凝土材料内部细观裂纹的整体扩展情况,即裂纹越丰富,分形维数越大;多重分形谱可反映从局部到整体不同层次的细观裂纹特征,裂纹分形维数和多重分形谱特征参数均与RCA取代率呈线性下降关系,与抗压强度呈线性增长关系;本研究可为再生混凝土在大型结构工程中的广泛应用奠定理论和实验基础。   相似文献   

9.
Influence of field recycled coarse aggregate on properties of concrete   总被引:1,自引:0,他引:1  
This paper investigates the influence of different amounts of recycled coarse aggregates obtained from a demolished RCC culvert 15 years old on the properties of recycled aggregate concrete (RAC). A new term called “coarse aggregate replacement ratio (CRR)” is introduced and is defined as the ratio of weight of recycled coarse aggregate to the total weight of coarse aggregate in a concrete mix. To analyze the behaviour of concrete in both the fresh and hardened state, a coarse aggregate replacement ratio of 0, 0.25, 0.50 and 1.0 are adopted in the concrete mixes. The properties namely compressive and indirect tensile strengths, modulus of elasticity, water absorption, volume of voids, density of hardened concrete and depth of chloride penetration are studied. From the experimental results it is observed that the concrete cured in air after 7 days of wet curing shows better strength than concrete cured completely under water for 28 days for all coarse aggregate replacement ratios. The volume of voids and water absorption of recycled aggregate concrete are 2.61 and 1.82% higher than those of normal concrete due to the high absorption capacity of old mortar adhered to recycled aggregates. The relationships among compressive strength, tensile strengths and modulus of elasticity are developed and verified with the models reported in the literature for both normal and recycled aggregate concrete. In addition, the non-destructive testing parameters such as rebound number and UPV (Ultrasonic pulse velocity) are reported. The study demonstrates the potential use of field recycled coarse aggregates (RCA) in concrete.  相似文献   

10.
This study evaluates the possibility of measuring the damage of the recycled concrete. In this way, two conventional concretes with a w/c ratio of 0.55 and 0.65 were designed. Based on them, six recycled concretes with different percentages of replacement of natural coarse aggregates with recycled coarse aggregate (20, 50 and 100%) were obtained. To take into account the high absorption capacity of the recycled aggregates, before using them they were pre-wetted for 10 min. The results concluded that scalar damage mechanics (based on the variations of the elastic modulus) and volumetric strains curves can be use to quantify the damage of the recycled concrete. The results from both approaches indicated that the damage to concrete depended on the percentage of replacement, increasing with higher replacement percentages. Additionally, values of the damage, that are quantified using the critical stress and according to the scalar damage mechanics, are given.  相似文献   

11.
Recycling of waste concrete is one of the sustainable solutions for the growing waste disposal crisis and depletion of natural aggregate sources. As a result, recycled concrete aggregate (RCA) is produced, and so far it has mostly been used in low-value applications such as for the pavement base. But, from the standpoint of promoting resource and energy savings and environmental preservation, it is essential to study whether a concrete made of recycled aggregates—recycled aggregate concrete (RAC) can be effectively used as a structural material. The experimental research presented in this paper is performed in order to investigate the flexural behavior of RAC beams when compared to the behavior of natural aggregate concrete (NAC) beams under short-term loading and consequently the possibility of using RAC in structural concrete elements. Three different percentages of coarse RCA in total mass of coarse aggregate in concrete mixtures (0 %—NAC, 50 %—RAC50, and 100 %—RAC100), and three different reinforcement ratios (0.28, 1.46, and 2.54 %) were the governing parameters in this investigation. Full-scale tests were performed on nine simply supported beams until the failure load had been reached. Comparison of load-deflection behavior, crack patterns, service deflections, failure modes and ultimate flexural capacity of NAC and RAC beams was made based on our own and other researchers’ test results. The results of conducted analysis showed that the flexural behavior of RAC beams is satisfactory comparing to the behavior of NAC beams, for both the service and ultimate loading. It is concluded that, within the limits of this research, the use of RAC in reinforced concrete beams is technically feasible.  相似文献   

12.
The increasing amount of waste concrete makes desirable collection of high quality of recycled aggregate from waste concrete to be reused for construction. This research used high grade recycled coarse aggregate (RCA) created using pulsed power technology to make concrete specimens. Concrete created from natural aggregate was also prepared to compare the properties of concrete made using pulsed power recycled aggregate. Established acoustic emission (AE) parameter analyses which are AE hit, relationship between RA value and average frequency, and b-value of AE amplitude distribution were applied to analyze the concrete fracture behavior. In addition, AE Weibull analysis was also proposed to evaluate the reliability of the concrete. A set of AE measurement testing was applied to the concrete specimens during compression loading. At the age of 28 days, compressive strength reaches 35.4 MPa and Young’s modulus is 23.6 GPa. The results indicate that the fracture process and reliability of concrete made using pulsed power RCA is similar to that of natural coarse aggregate concrete suggesting that both concrete have equivalent characteristic under compression. Furthermore, the good agreement results shared by AE Weibull analysis with those of other analyses suggesting this method can also be employed as one parameter to determine the condition of concrete.  相似文献   

13.
In this research work, High Performance Concrete (HPC) was produced employing 30% of fly ash and 70% of Portland cement as binder materials. Three types of coarse recycled concrete aggregates (RCA) sourced from medium to high strength concretes were employed as 100% replacement of natural aggregates for recycled aggregate concrete (RAC) production. The specimens of four types of concretes (natural aggregate concrete (NAC) and three RACs) were subjected to initial steam curing besides the conventional curing process. The use of high quality RCA (>100 MPa) in HPC produced RAC with similar or improved pore structures, compressive and splitting tensile strengths, and modulus of elasticity to those of NAC. It was determined that the mechanical and physical behaviour of HPC decreased with the reduction of RCA quality. Nonetheless steam-cured RACs had greater reductions of porosity up to 90 days than NAC, which led to lower capillary pore volume.  相似文献   

14.
The aim of this study is to investigate the role of 0–2 mm fine aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate (RCA) concrete with normal and high strengths. Normal coarse and fine aggregates were substituted with the same grading of RCAs in two normal and high strength concrete mixtures. In addition, to keep the same slump value for all mixes, additional water or superplasticizer were used in the RCA concretes. The compressive and splitting tensile strengths were measured at 3, 7 and 28 days. Test results show that coarse and fine RCAs, which were achieved from a parent concrete with 30 MPa compressive strength, have about 11.5 and 3.5 times higher water absorption than normal coarse and fine aggregates, respectively. The density of RCAs was about 20% less than normal aggregates, and, hence, the density of RCA concrete was about 8–13.5% less than normal aggregate concrete. The use of RCA instead of normal aggregates reduced the compressive and splitting tensile strengths in both normal and high strength concrete. The reduction in the splitting tensile strength was more pronounced than for the compressive strength. However, both strengths could be improved by incorporating silica fume and/or normal fine aggregates of 0–2 mm size in the RCA concrete mixture. The positive effect of the contribution of normal sand of 0–2 mm in RCA concrete is more pronounced in the compressive strength of a normal strength concrete and in the splitting tensile strength of high strength concrete. In addition, some equation predictions of the splitting tensile strength from compressive strength are recommended for both normal and RCA concretes.  相似文献   

15.
This paper describes pullout test results on deformed reinforcing bars in natural and recycled fine aggregate (RFA) concrete. The effects of bar location and RFA grade on bond strength between reinforcing bar and recycled aggregate concrete (RAC) were evaluated through the experimental program. A total of 150 pullout specimens were fabricated for the experiment. Two reinforcing bar orientations were considered with respect to the casting direction; vertical bars and horizontal bars, the latter of which was prepared to evaluate top-bar effect. Considered variables included four RFA replacement ratios (RFArs), two water-absorption grades (RFA-A: 5.83%, RFA-B: 7.95%) of RFA and three reinforcing bar locations (75, 225 and 375 mm height from the bottom of the casting mold). In addition, to evaluate the thermal and aging effect on bond behavior between the reinforcing bar and RFA concrete, some parts of pullout specimens had exposed to rapid freeze–thaw environment or been cured at air during 28 or 730 days. Test results demonstrated that bond strength does not seem to be affected by the RFAr for higher RFA grades (RFA-A), at least up to 60% RFAr. In contrast, the RAC including lower RFA grade (RFA-B) showed clear decreases in bond strength with increasing RFAr, similar to the trend observed for compressive strength. For horizontal pullout specimens, RFA concrete specimens showed higher bond strength gap between top and bottom bars than natural aggregate concrete (NAC) specimens. Bond strengths of the horizontally cast pullout specimens were affected by the flowability of concrete rather than the RFAr or RFA grade. No noticeable degradation occurred during freeze–thaw cycling of the RAC specimens, indicating that the RFA used in this study is appropriate for use in freeze–thaw environments.  相似文献   

16.
Many environmental problems caused by the large volumes of construction and demolition waste (C&DW), the lack of adequate deposition sites and the shortage of natural resources have led to the use of C&DW as replacement of natural aggregates in the production of new concrete. As in the case of natural aggregates, when recycled aggregates are used to manufacture structural concrete, the assessment of their physical, mechanical and durable characteristics is a key issue. The different physical and mechanical properties of the recycled coarse aggregate (RCA) are evaluated. RCA was obtained by crushing conventional concretes with different strength levels (different w/c ratios) containing four different types of natural coarse aggregates (three crushed stones and a siliceous gravel), which differ in shape, composition and surface texture. There is a significant influence of the natural coarse aggregate (NCA) on the properties of RCA, which in many cases is greater than that of the w/c ratio of the source concrete.  相似文献   

17.
The increase in drying shrinkage and decrease in tensile properties of concrete proportioned with recycled concrete aggregate (RCA) can result in a high risk of cracking under restrained conditions. However, the reduction of the modulus of elasticity of such concrete, can lead to greater stress relaxation and reduction in cracking potential. An experimental program was undertaken to evaluate the effect of using RCA at high substitution rates of 50 and 100% (by vol.) on the cracking potential under restrained conditions. Four different types of coarse RCA, two binder types, and water-to-cementitious materials ratio (w/cm) of 0.37 and 0.40 were considered in the study. Mechanical properties, drying shrinkage, and cracking potential using the ring test were investigated. Test results indicated no cracking up to 35 days in the case of the reference mixture and the concrete prepared with 50% RCA replacement. The 28-day stress rate of such mixtures were limited to 0.12 MPa/day. Depending on the RCA type, the incorporation of 100% coarse RCA in a binary system made with 0.40 w/cm increased the 35-day cracking potential to up to 74%, with values of stress rate ranging from 0.25 to 0.34 MPa/day. The mixtures proportioned with 100% RCA developed tensile creep coefficient of 0.34–0.78 at the time of cracking compared to 0.34–0.36 for the reference concrete at the same age. However, greater elastic concrete strain and lower tensile strength resulted in reduced time to cracking at 100% RCA replacement, which was 9.0–11.0 days.  相似文献   

18.
针对再生混凝土阻尼性能,通过三点弯曲梁大尺寸材料阻尼测试装置,试验研究再生粗骨料(Recycled Coarse Aggregate, RCA)的取代率、RCA粒径、改性掺合料、激振力频率及幅值等因素对再生混凝土弹性阶段损耗因子影响。结果表明,再生混凝土损耗因子分别随RCA取代率的增加及RCA平均粒径的减小而增加;随激振频率的增加及激振力幅值的减小而减小;与普通混凝土相比,再生混凝土的损耗因子增加3%~10%;复掺钢纤维+橡胶粉、粉煤灰+矿粉改性后的再生混凝土损耗因子较改性前分别增加45.8%及30.3%,阻尼增强效果显著。RCA与新硬化水泥砂浆间薄弱界面层的粘滞滑移变形、界面层应力集中所致微裂缝的产生与发展及内部裂隙间的摩擦作用增加了再生混凝土的阻尼耗能。因此,当再生混凝土用于大宗结构性材料时,综合考虑其强度及阻尼性能,RCA取代率不应超过50%,并可复掺粉煤灰+矿粉进行综合改性。  相似文献   

19.
Recycled coarse aggregate (RCA) concrete has attracted more and more attention worldwide in recent years due to the exhaustion of natural coarse aggregate and environmental pollution from construction and demolition waste in civil engineering. In this study, experiments were carried out on over 100 specimens to investigate the mechanical properties and failure mode of concrete with different volume content of steel fibers (0%, 0.5%, 1%, 1.5%, and 2%) and different RCA replacement ratio (0%, 30%, 50% and 100%) under direct shear load. The results show that addition of steel fibers can effectively improve the shear strength and shear toughness of RCA concrete. For a given compressive strength, the RCA replacement ratio has negligible impact on shear strength, but shear deformation and toughness increase as RCA replacement ratio reaches above a ‘limiting value’. A shear strength formula for steel fiber reinforced RCA concrete (SFRCAC) based on compressive strength and characteristic coefficient of steel fiber has been put forward.  相似文献   

20.
The bond behavior of lightweight self-consolidating concrete (LWSCC) must be understood in order to use this type of high performance concrete in structural members. The objective of this research program is to assess the bond behavior of reinforcing steel bars embedded in LWSCC members. Three different classes of LWSCC mixtures were developed with two different types of lightweight aggregates. In addition, one normal weight SCC (NWSCC) was developed and used as a control mixture. A total of twenty four pullout tests were conducted on deformed reinforcing bars with an embedded length of either 100 or 200 mm and the load-slip responses, failure modes and bond strengths of LWSCC and NWSCC were compared. Based on the results of this study, the bond strength of deformed bars for LWSCCs are found to be less (between 16 and 38%) as compared with NWSCC. Under the conditions of equivalent workability properties and compressive strength, bond slip properties were shown to be significantly influenced by the type of lightweight aggregate used. In this study, the use of expanded shale in the production of LWSCC significantly enhanced the pullout strength when compared with lightweight slag aggregate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号