首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In this study, the twin roll casting process has been utilized to prepare initial as‐cast strip of AZ91 alloy that has been further tested in uniaxial tension at 325, 350 and 375 ºC, and at strain rates from 10–2 to 10–4 s–1. The ability of AZ91 strip to undergo superplastic or superplastic‐like deformation in longitudinal direction, in transverse direction, and in 45 degrees to longitudinal direction was investigated with no further thermal or thermomechanical processing applied prior to the testing. At temperature 350 ºC and medium strain rate the maximum elongation reached almost 200% in direction parallel to the strip casting, however in the transverse and 45 degrees direction, different temperature, and at higher strain rates the maximum elongation was lower. Based on microstructural investigation by means of optical microscopy and scanning electron microscopy (SEM) it could be seen that continuous dynamic recrystallization of initial coarse dendritic as‐cast microstructure during elevated temperature deformation is active and responsible for high elongations. Additional analysis is provided by means of a strain rate sensitivity characterization and its evolution with increased level of strain. Strain rate sensitivity of AZ91alloy increased with increasing level of strain from 0.20 to 0.33.  相似文献   

2.
The superplasticity is the capability of some metallic materials to exhibit very highly tensile elongation before failure. The superplastic tensile tests were carried out at various deformation conditions in this paper to investigate the superplastic behaviors and microstructure evolution of TC11 titanium alloy. The results indicate that the smaller the grain size, the better the superplasticity is, and the wider the superplastic temperature and strain rate is, in which the superplastic temperature is ranging from 1023 to 1223 K and the strain rate is ranging from 4.4 × 10?5 to 1.1 × 10?2 s?1. The maximum tensile elongation is 1260% at the optimum deformation conditions (1173 K and 2.2 × 10?4 s?1). For further enhancing the superplasticity of TC11 titanium alloy, the novel tensile method of maximum m superplastic deformation is adopted in the paper. Compared with the conventional tensile methods, the excellent superplasticity of TC11 titanium alloy has been found with its maximum elongation of 2300%.  相似文献   

3.
Nanocomposites of Al2O3/Ni–Co prepared using Al2O3 of various particle sizes were fabricated by pulse current electrodeposition. Their superplastic tensile deformation was investigated at strain rates of 8.33 × 10−4 s−1 and 1.67 × 10−3 s−1 and temperatures of 723–823 K. The Al2O3 particle sizes and the deformation temperature had significant influence on the elongation of the deposited materials. The optimal superplastic condition and the maximum elongation were determined. A low temperature superplasticity with elongation of 632% was achieved at a strain rate of 1.67 × 10−3 s−1 and 823 K. Scanning electron microscopy and transmission electron microscopy were used to examine the microstructures of the deposited and deformed samples. The grains grew to a micrometer dimensions and were elongated along the tensile direction after superplastic deformation. Superplasticity in electrodeposited nanocomposites is related to the presence of S at grain boundaries and to deformation twinning.  相似文献   

4.
Abstract

High strain rate superplasticity was obtained for powder Ti–10V–2Fe–3Al (Ti-1023) alloy prepared by powder sintering and isothermal forging technology. The selected powder was cold isostatic pressed, sintered and isothermal forged to prepare this powder alloy. Tensile testing was conducted at optimum superplastic temperaure of 1023 K with different initial strain rate, and the elongation to failure, the flow stress and the microstructure were analysed. The experiment results exhibited that the microstructure of this powder alloy is extraordinary uniform and fine, resulted in considerable enhancement of optimum initial strain rate increased from 3·3×10?4 s?1 of conventional cast and wrought Ti-1023 alloy to 3·3×10?3 s?1 of this powder alloy. The elongation to failure increased first and then decreased with initial strain rate from 3·3×10?4 to 3·3×10?2 s?1. The strain rate sensitivity m is about 0·46 near initial strain rate of 3·3×10?3 s?1, larger than conventional cast and wrought Ti-1023 alloy. Microstructure observations showed that dynamic recrystallisation and grain growth were present during superplastic deforming.  相似文献   

5.
Abstract

The superplastic potential of an aluminium alloy 2124/SiCp composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot extrusion, simple warm rolling has been employed to obtain a fine grained structure before superplastic testing. Constant strain rate tests were performed to characterise the superplastic behaviour of the composite. All tests were performed in air at temperatures of 743–783 K and in the strain rate range 10-3-10-1 S-l. A maximum elongation of 425% was achieved at a temperature of 763 K and a strain rate of 8.3 × 10-2 S-1. The highest value obtained for the strain rate sensitivity index (m) was 0.41. Differential scanning calorimetry was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that no liquid phase existed where maximum elongation was achieved and deformation took place entirely in the solid state. Optical and electron microscopy were used to examine the materials microstructure before and after superplastic testing.  相似文献   

6.
In this work, effects of cold rolling variables including strain, strain rate, strain path, initial austenite grain size and rolling temperature on the formation of strain-induced martensite in AISI 201L stainless steel are investigated. Cold rolling was carried out at −40, −10, and 25 °C with strain rates of 0.1–1.2 s−1 and thickness reductions of 0–95%. The results showed that saturation strain of martensite formation during cold rolling at room temperature with the strain rate of 0.5 s−1 was about 0.5. Increasing the strain, strain rate, and initial austenite grain size, decreasing rolling temperature, and the use of cross rolling resulted in an increase in the volume fraction of strain-induced martensite and a decrease in the saturation strain value. It was found that effect of decreasing rolling temperature and cross rolling was more effective on the formation of strain-induced martensite compared to other parameters, leading to a reduction of saturation strain from 0.5 to 0.28.  相似文献   

7.
Ti–6Al–4V alloy having a heterogeneous microstructure composed of ultrafine‐equiaxed‐α‐grains and fine‐lamellar‐α‐grains is investigated for microstructural changes during superplastic deformation at temperature of 700 °C. The Ti–6Al–4V alloy having an optimum fraction of fine‐lamellar‐α‐grains exhibits an excellent superplastic property and the highest elongation of 583% (tested at 700 °C 10?3 s?1). This is mainly due to the optimized activation of grain‐boundary‐sliding and additional accommodation mechanism associated with frequent occurrences of dynamic recrystallization and β precipitation at boundaries during deformation of the heterogeneous starting microstructure. The present result suggests the possibility that optimizing the starting microstructure so as to have an optimum heterogeneous‐microstructure serves as an additional stress accommodation mechanism and leads to a large superplastic elongation.
  相似文献   

8.
《Materials Letters》2004,58(7-8):1297-1301
Superplasticity was found in single-phase Ni–48Al alloy with initial grain size of 200 μm under an initial strain rate of 1.25×10−4 to 2×10−3 s−1 at temperatures ranging from 1025 to 1100 °C. The maximum elongation of 188.2% was obtained under an initial strain rate of 1.125×10−3 s−1 at 1100 °C. Optical metallography (OM) showed that the grains were refined during superplastic deformation from initial 200 to less than 20 μm. Transmission electron microcopy (TEM) observation showed that an unstable subgrain boundary network formed during superplastic deformation. The subgrain boundaries were transformed into low- and high-angle grain boundaries by absorbing gliding dislocations. The large-grained superplastic phenomenon could be explained by continuously dynamic recovery and recrystallization (CDRR).  相似文献   

9.
Abstract

Superplasticity in terms of total tensile elongation was studied in a titanium alloy of nominal composition Ti–6·5Al–3·3Mo–1·6Zr (wt-%) for three strain rates (1·04 × 10?3, 2·1 × 10?3, and 4·2 × 10?3s?1) and in the temperature range 1123–1223 K for microstructures obtained by different processing schedules. Fine equiaxed microstructure with a low aspect ratio of 1·15 was accomplished in this alloy by combining two types of deformation. While the first step consists of heavy deformations for refining and intermixing the phases, a second step, consisting of light homogeneous reductions in several stages, was necessary to remove the banding that developed during the first step. The resulting microstructure underwent enormous tensile elongation (1700–1725%), even under relatively high strain rates (1·04 × 10?3 and 2·1 × 10?3s?1), making this alloy most suitable for commercial superplastic forming. The present investigation also revealed that the usual sheet rolling practice of heavy reductions to refine the microstructure leads to localised banding which could not be removed by annealing; therefore, the tensile elongation was limited to 770% only. The reason for this may be attributed to the resistance in grain boundary sliding and rotation encountered in microstructures with shear bands and grains with high aspect ratio. Strain enhanced grain growth was also greater in these microstructures.

MST/555  相似文献   

10.
Gas velocity is a key parameter regulating the particle size and the cooling rate of the gas atomized powder applied in additive manufacturing, metal injection molding, thermal spraying, and soft magnetic composites. In this paper, on basis of the well-designed close-coupled nozzles with different gas Mach numbers at the outlet, the gas field structure was simulated by Computational Fluid Dynamics (CFD) software, and the process of cooling and solidification of Fe-6.5 wt% Si metal droplets was calculated by finite difference method. The results show that with the increase of Mach number, both the gas velocity downstream and the pressure at the base of melt delivery tube tip rise, whereas the mass flow rate of the melt decreases. The nozzles with high Mach number can produce finer powder with higher cooling rate. The median diameter of the powder prepared by the nozzle with Mach numbers of 1.0, 1.5, 2.0, and 2.5 is 44.9, 39.0, 32.5, and 29.1 μm, respectively, and the corresponding cooling rate of the metal droplet with a diameter of 80 μm is 2.85 × 104, 2.98 × 104, 3.32 × 104, and 3.50 × 104 K/s, respectively. This work provides new ideas and suggestions for the preparation of metal powder with small particle size at high cooling rate.  相似文献   

11.
Abstract

The tensile and bulging characteristics of Ti–6Al–4V alloy sheet have been investigated under superplastic conditions following various prior treatments. These prior treatments. consisted of cold rolling to different degrees of reduction and recrystallization. It was found that cold rolling markedly improves the superplasticity of the alloy, and even recrystallization, which causes grain coarsening, does not eliminate this effect. Moreover, the ratio of the total tensile elongation to the bulging strain to failure was found to decrease with increased prerolling.

MST/172  相似文献   

12.
《Materials Letters》2001,47(1-2):30-34
In this paper, we aim to examine the superplastic behavior of an extruded Ni–28.5Al–20.4Fe (at.%) alloy, which consists of β+γ phases with an average linear intercept grain size of 30–50 μm. Its tensile properties were determined at temperatures from 1123 to 1323 K and initial strain rates from 1.04×10−2 to 1.04×10−4 s−1. A maximum elongation of 233% was obtained at 1123 K and a strain rate of 5.2×10−4 s−1. Transmission electron microscope (TEM) observation found many dislocation-free grains adjacent to grains with a high-dislocation density and subgrains and subgrain boundaries, which indicate that dynamic recrystallization has occurred as an efficient accommodation mechanism. Scanning electron microscope (SEM) examination of the fracture sample after superplastic deformation reveals many voids on the fracture surface. By correlating with the results of TEM observation, it is suggested that the superplastic deformation in this alloy should be controlled by a grain boundary sliding-based mechanism accommodated by the movement of dislocation and dynamic recrystallization.  相似文献   

13.
Abstract

The superplastic properties and microstructure evolution of a 0.15%Zr and 0.7%Cu modified 6061 aluminium alloy were examined in tension at temperatures ranging from 475 to 600°C and strain rates ranging from 7 × 10-6 to 2.8 × 10-2 s-1. The refined microstructure with an average grain size of about 11 μm was produced in thin sheets by a commercially viable thermomechanical process. It was shown that the modified 6061 alloy exhibits a moderate superplastic elongation of 580% in the entirely solid state at 570°C and ? = 2.8 × 10-4 s-1. Superior superplastic properties (elongation to failure of 1300% with a corresponding strain rate sensitivity coefficient m of about 0.65) were found at the same strain rate and a temperature of 590°C, which is higher than the incipient melting point of the 6061 alloy (~575°C). The microstructural evolution during superplastic deformation of the 6061 alloy has been studied quantitatively. The presence of a slight amount of liquid phase greatly promotes the superplastic properties of the 6061 alloy, reducing the cavitation level.  相似文献   

14.
In the present study, the superplastic behavior of five Al–Mg–Zn alloys in coarse grain size condition has been studied. The alloys were melted, cast into ingots and hot rolled. The grain size of the rolled samples was 69, 45, 40, 30 and 35 μm. Tensile test specimens were machined from the hot rolled plate in the rolling direction. Strain-rate-change (SCR) tests at temperatures between 300 and 450 °C and strain rates between 1 × 10−4 and 1 × 10−1 s−1 were carried out to determine the strain rate sensitivity of the flow stress. Finally, elongation-to-failure tests were conducted at those temperatures and strain rates, where the alloys showed high strain rate sensitivity. A maximal elongation of 400% was obtained for the 3.89 wt.% Zn alloy. The results are explained in terms of solute drag creep as the principal deformation mechanism.  相似文献   

15.
Abstract

Superplasticity in a 7055 aluminum alloy subjected to intense plastic straining through equal channel angular extrusion (ECAE) was studied in tension over a range of strain rates from 1.4 × 10-5 to 5.6 × 10-2 s-1 in the temperature interval 300 - 450 °C. The alloy had a grain size of ~ 1 μm. A maximum elongation to failure of ~750% occurred at a temperature of 425 °C and an initial strain rate of 5.6 × 10-4 s-1, with a strain rate sensitivity coefficient m of about 0.46. The highest m value was ~0.5 at a strain rate of 1.4 × 10-3 s-1 and T≥ 425 °C. Moderate superplastic properties with a total elongation of about 435% and m of ~0.4 were recorded in the temperature interval 350 - 400 °C; no cavitation was found. It was shown that the main feature of superplastic behaviour of the ECAE processed 7055 aluminum alloy is a low yield stress and strong strain hardening during the initial stages of superplastic deformation. Comparing the present results with the superplastic behaviour of the 7055 Al subjected to thermomechanical processing (TMP), the highest tensile elongation in the ECAE processed material occurred at lower temperatures because ECAE produces a finer grained structure.  相似文献   

16.
The Mg–7Y–4Gd–1Zn (wt.%) alloy was prepared by hot extrusion technology, and the microstructure, tensile properties and superplastic behavior have been investigated. The extruded alloy possesses high tensile strength both at room temperature and 250 °C, and especially the yield strength can remain above 300 MPa at 250 °C. The outstanding microstructure, i.e. bent 18R long period stacking ordered (LPSO) strips and dynamic recrystallization (DRX) Mg grains containing fine lamellae with 14H LPSO or stacking fault structures, is responsible for the excellent mechanical properties, and it is considered that the integrated performance can be further improved by controlling the size of LPSO phase. The alloy shows the maximum elongation of 700% at 470 °C and 1.7 × 10−4 s−1. The predominant superplastic mechanism is considered to be grain boundary sliding assisted by lattice diffusion. The fracture of superplastic deformation is related to the microstructure evolution, i.e. the disappearance of LPSO phase and the formation of cubic phase. Both high temperature and stress contribute to the phase transformation.  相似文献   

17.
An Al–Zn–Mg–Cu alloy was friction stir processed over two kinds of backing anvils, at two different cooling rates. A finer grain size, 0.3 vs 0.5 μm, was obtained by processing at the highest cooling rate. Both materials showed superplastic behavior with a maximum elongation to fracture of about 510%. Grain boundary sliding was the operative deformation mechanism. Furthermore, the finer grain size material showed high strain rate superplasticity, at 10−2 s−1, at lower temperatures, as low as 250 °C.  相似文献   

18.
Abstract

The effect of initial density and rapid prestraining on superplastic ductility of 1 wt-%CuO doped cubic zirconia (8Y–CSZ) was investigated. To obtain a range of initial densities, the tensile test specimens were slip cast to net shape and pressureless sintered over a range of temperatures in air. The specimens were then superplastically tested at a temperature of 1500 K and at a constant strain rate of 1×10-4 s-1. The results showed that specimens with low initial densities had lower flow stresses and higher superplastic elongations to failure than higher density specimens. The reasons for the ductility change were discussed with reference to the presence of porosity and grain growth. For the prestraining test, a specimen with an initial density of 95% was prestrained to 30% at a temperature of 1550 K and at a prestrain rate ? · 1 of 1×10-3 s-1, followed by elongation to failure at a slower test strain rate ? · 2 of 1×10-4 s-1. It was seen that prestraining at the above test conditions considerably improved superplastic ductility. The reasons for this ductility enhancement were explained in terms of suppression of grain growth.  相似文献   

19.
In this paper laser beam welding (LBW) was used to join Ti–6Al–4V alloy as a pre-forming operation before superplastic deformation (SPF) process. Superplastic deformation behavior of laser welded Ti–6Al–4V alloy was investigated. The results indicated that the welded Ti–6Al–4V alloy had good superplasticity when deformed at temperature range of 870–920 °C and strain rate range of 10−3–10−2 s−1, and the elongation was 233–397%. The microstructure observation indicated that dynamic recrystallization happened in the weld bead, and the acicular structure of weld bead was transforming into equiaxed grains during tensile process.  相似文献   

20.
The effect of cooling rate on the composition, morphology, size, and volume fraction of the secondary phase in as‐cast Mg–Gd–Y–Zr alloy is investigated. In the study, a casting containing five steps with thickness of 10–50 mm is produced, in which cooling rate ranging from 2.6 to 11.0 K s?1 is created. The secondary phase is characterized using optical microscope (OM), scanning electron microscope (SEM), and electron probe micro‐analyzer (EPMA). The volume fraction of the secondary phase is determined using OM and quantitative metallographic analysis, and Vickers hardness test is conducted to verify the analysis results. The effect of the cooling rate on the volume fraction of the secondary phase is discussed in detail. The result shows that with the increase of the cooling rate, the size of the secondary phase decreases. The effect of the cooling rate on the volume fraction of the secondary phase is complicated somewhat. A comprehensive analysis on the experimental data shows that a critical cooling rate may exist, over which the volume fraction of the secondary phase decreases with the increase of the cooling rate, however under which the volume fraction increases with the increase of the cooling rate.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号