首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 146 毫秒
1.
利用三氯化铝为催化剂、煤焦油为前驱体催化炭化致密化碳毡制备C/C复合材料,在此基础上结合同步浸渍原位反应或反应熔体浸渗过程制备C/C-SiC复合材料,并对复合材料的微观结构、力学性能等进行表征分析.结果表明:在催化炭化-原位反应法制得的C/C-SiC复合材料中,SiC多以纳米线的形式存在于碳纤维束内部和碳纤维束之间的孔隙,C/C-SiC复合材料总体表现出假塑性断裂模式,其弯曲强度达到了(158±12)MPa;而催化炭化-反应熔体浸渗法制得的C/C-SiC复合材料中,SiC以立方体、六方体颗粒存在,复合材料的断裂行为呈现出脆性断裂模式,弯曲强度达到了(150±10)MPa.相对于催化炭化-反应熔体浸渗法,催化炭化-原位反应法所得到的C/C-SiC复合材料具有工艺简单、成本低、力学性能优异等诸多优势.  相似文献   

2.
采用不同面密度和丝束大小的碳纤维布,通过不同z向缝合方式编织了两种碳布叠层结构的碳纤维预制体,再经化学气相渗透法(chemical vapor infiltration, CVI)与气相渗硅法(gaseous silicon infiltration, GSI)联用制备了C/C-SiC复合材料。研究了碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响。结果表明,由纤维体积分数与C/C素坯密度都相同的预制体所制备的两种复合材料的密度、各相组成、结构与性能均大不相同。较小的碳纤维丝束(1K)和碳布面密度(92 g/m2),以及锁式缝合留下的较大孔隙为GSI反应中Si蒸气的渗透提供了更加充足的通道,最终制备的T1复合材料孔隙率低、结构均匀、性能更高,其弯曲强度、模量和断裂韧度分别为300.97 MPa, 51.75 GPa, 11.32 MPa·m1/2。初始预制体结构和C/C中间体结构的综合调控是CVI-GSI联用工艺制备高性能C/C-SiC复合材料的关键。  相似文献   

3.
缪花明  刘荣军  王衍飞  李俊生  李端  万帆 《材料工程》1990,(收录汇总):142-148
采用不同面密度和丝束大小的碳纤维布,通过不同z向缝合方式编织了两种碳布叠层结构的碳纤维预制体,再经化学气相渗透法(chemical vapor infiltration,CVI)与气相渗硅法(gaseous silicon infiltration,GSI)联用制备了C/C-SiC复合材料。研究了碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响。结果表明,由纤维体积分数与C/C素坯密度都相同的预制体所制备的两种复合材料的密度、各相组成、结构与性能均大不相同。较小的碳纤维丝束(1K)和碳布面密度(92 g/m^(2)),以及锁式缝合留下的较大孔隙为GSI反应中Si蒸气的渗透提供了更加充足的通道,最终制备的T1复合材料孔隙率低、结构均匀、性能更高,其弯曲强度、模量和断裂韧度分别为300.97 MPa,51.75 GPa,11.32 MPa·m^(1/2)。初始预制体结构和C/C中间体结构的综合调控是CVI-GSI联用工艺制备高性能C/C-SiC复合材料的关键。  相似文献   

4.
通过观察C/C-SiC复合材料组元分布的扫描电子显微镜(SEM)照片 , 获得了C/C-SiC复合材料化学气相渗透(CVI)制备过程中产生孔隙和微裂纹的几何信息。在此基础上 , 建立了包含孔隙和微裂纹的C/C-SiC微结构有限元模型 , 并利用均匀化等效计算方法预测了平纹编织C/C-SiC复合材料的模量。针对CVI沉积方式制备的2组不同的C/C-SiC复合材料 , 实验测试与等效计算结果表明 : 基于 SEM照片建立的C/C-SiC纤维束和复合材料微结构有限元模型 , 能够反映CVI工艺制备C/C-SiC中孔隙和微裂纹的分布状况; 计算结果与实验数据有良好的一致性 , 数值计算可有效预测C/C-SiC编织复合材料的模量。   相似文献   

5.
主要研究了随机孔隙缺陷在C/C-SiC缎纹编织复合材料中的有限元建模方法及其对拉伸性能的影响。基于C/C-SiC缎纹编织复合材料的细观结构和实验观察所得的微观形貌,得出孔隙缺陷具有随机分布特征,提出了一种三维随机碰撞算法模拟孔隙在复合材料中的分布,建立了含随机孔隙缺陷的C/C-SiC缎纹编织复合材料的有限元模型。采用有限元软件ABAQUS模拟了其在拉伸载荷下的力学行为,讨论了孔隙缺陷的尺寸和分布形式对材料拉伸性能的影响,并对试样进行了单轴拉伸实验测试,验证了数值模拟的有效性。结果表明,用本文方法建立的有限元模型符合含孔隙缺陷C/C-SiC缎纹编织复合材料的真实细观结构,相应的数值模拟结果也与试验数据吻合较好。本文的研究结果为含孔隙缺陷的缎纹编织复合材料及具有相似结构特征的复合材料的力学分析与优化设计提供了一种有效的方法。   相似文献   

6.
C/C-SiC机织复合材料尺度参数对力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
针对C/C-SiC纤维机织复合材料的特点,建立了C/C-SiC微结构有限元模型,并结合能量法研究了不同微结构关联参数对C/C-SiC机织复合材料宏观力学性能的影响。研究结果表明:本文中提出的C/C-SiC微结构有限元模型能够有效地反映C/C-SiC复合材料尺度关联参数对C/C-SiC力学性能的影响,纤维丝尺度的各个参数主要与C/C-SiC纤维束的力学性能相关联;纤维束尺度的各个参数主要与C/C-SiC宏观构件的整体性能相关联。  相似文献   

7.
利用层内混杂的方式制备碳/芳纶纤维混杂纬编双轴向多层衬纱织物,通过对材料进行拉伸、三点弯曲等实验研究该织物增强复合材料的力学性能及混杂比对其力学性能的影响。结果表明,按照一定的混杂比加入芳纶纤维后复合材料的拉伸性能提高,表现出积极的混杂效应。由于延伸性好的芳纶纤维的加入,使复合材料的拉伸断裂伸长率明显提高,材料破坏模式出现了完全脆性断裂模式(C12材料破坏形式)和“扫帚”形纤维断裂模式(C8A4,C6A6材料破坏形式)。此外,按照一定的混杂比加入芳纶纤维也有效改善了碳纤维增强复合材料的破坏韧性,碳/芳纶纤维混杂MBWK织物增强复合材料的弯曲强度和弯曲模量随混杂比的提高而呈下降趋势,当复合材料中芳纶含量从42%(体积分数,下同)(C6A6)到59.2%(C4A8)的变化过程中,弯曲强度和弯曲模量的降低率较高。0°试样在混杂比为59.2%(C4A8)时,弯曲挠度最大,达到7.49 mm,远高于纯芳纶纤维或纯碳纤维增强的复合材料。所有90°混杂复合材料试样的弯曲挠度均高于纯芳纶纤维或纯碳纤维增强的复合材料,表现出积极的混杂效应。  相似文献   

8.
针对常用恒密度预制体在C/C复合材料制备过程中容易表面孔隙堵塞现象,沿着厚度方向将预制体设计成密度梯度变化,并通过化学气相渗透法制备C/C复合材料。研究了密度梯度变化的预制体结构对C/C复合材料的结构和弯曲力学性能的影响。结果表明:变密度预制体改变了碳纤维在预制体内的分布,导致C/C复合材料内部孔隙结构的变化,形成了细小的闭孔,从而提高了C/C复合材料的力学性能。  相似文献   

9.
以准三维针刺碳纤维预制体,经化学气相渗透(CVI)法制备了4种密度的C/C多孔体,利用先驱体浸渍裂解法(PIP)制备了C/C-SiC复合材料,研究了C/C多孔体对C/C-SiC复合材料制备和最终性能的影响。结果表明:C/C多孔体密度越低,最终得到的C/C-SiC复合材料开孔隙率及SiC含量较高。SiC的存在使C/C-SiC材料具有较高的弯曲强度,纤维和基体界面也是影响弯曲强度的关键因素,其中密度为1.35g/cm3的C/C多孔体所制备的C/C-SiC复合材料纤维和基体之间形成较好的结合界面,其弯曲强度最大。同时,SiC含量增加可显著提高C/C-SiC复合材料的抗烧蚀性能。  相似文献   

10.
利用碳纤维编织布为增强体,采用混合粉料模压成型工艺制备C/C-SiC复合材料,分析了各个因素对C/C-SiC复合材料密度及强度影响的大小以及显著性。研究表明,树脂与石墨粉比例和纤维含量对C/C-SiC复合材料密度的影响比较大,而硅粉含量以及配比浓度的影响较小且基本相同;同时树脂与石墨粉比例这一因素对C/C-SiC复合材料强度影响也非常显著。并且随着树脂含量的减少,C/C-SiC复合材料强度降低。  相似文献   

11.
采用先驱体浸渍裂解工艺(PIP工艺)制备C/SiC复合材料, 研究了不同先驱体对复合材料浸渍行为的影响(三种先驱体分别为固态聚碳硅烷(PCS(s))、液态聚碳硅烷Ⅰ(PCS-Ⅰ(l))和液态聚碳硅烷Ⅱ(PCS-Ⅱ(l)), 制备的三种复合材料体系分别为C/SiC-0、C/SiC-Ⅰ和C/SiC-Ⅱ)。结合C/SiC复合材料的力学性能以及不同裂解周期C/SiC复合材料的微观形貌, 研究了不同先驱体制备的C/SiC复合材料对碳纤维织物浸渍行为的影响。研究结果表明: C/SiC-Ⅰ复合材料的室温弯曲强度最高, 达到336 MPa。不同裂解周期的微观形貌显示, C/SiC-0复合材料内部孔隙分布于碳纤维束间; C/SiC-Ⅰ复合材料内部较致密, 孔隙分布均匀; C/SiC-Ⅱ复合材料基体和束丝内部都存在孔隙, 说明三种聚碳硅烷浸渍液对C/SiC复合材料有不同的浸渍效果。凝胶渗透色谱(GPC)的分析结果显示, 由于浸渍液的分子量不同, 大分子无法浸渍到碳纤维束丝内部, 会造成裂解后的复合材料束内SiC基体较少, 造成其力学性能较低。  相似文献   

12.
采用密度为1.0g/cm~3的C/C素坯,联合化学气相渗透(CVI)和气相渗硅(GSI)2种工艺制备C/C-SiC复合材料,研究CVI C/C-SiC复合材料中间体的密度对CVI-GSI C/C-SiC复合材料物相组成、微观结构及力学性能的影响。结果表明:随着CVI C/C-SiC复合材料中间体密度的增大,CVI-GSI C/C-SiC复合材料C含量增多,残余Si含量减少,SiC含量先增多后减少,CVI-GSI C/C-SiC复合材料的密度先增大后减小;随着CVI C/C-SiC复合材料中间体的密度由1.27g/cm~3增加到1.63g/cm~3时,得到的CVI-GSI C/C-SiC复合材料的力学性能先升高后降低。当CVI C/C-SiC复合材料密度为1.42g/cm~3时,制得的CVI-GSI C/C-SiC复合材料力学性能最好,其弯曲强度为247.50MPa,弯曲模量为25.63GPa,断裂韧度为10.08MPa·m~(1/2)。  相似文献   

13.
熔融渗硅法制备C/C-SiC复合材料的研究进展   总被引:1,自引:1,他引:0  
综述了熔融渗硅法制备C/C-SiC复合材料的国内外研究和应用现状,重点分析了碳纤维预制体和C/C多孔体的制备,以及熔融渗硅过程对C/C-SiC复合材料性能和结构的影响,介绍了C/C-SiC复合材料作为热结构和摩擦材料在航空航天和先进摩擦制动系统中的应用,提出了C/C-SiC复合材料制备过程中存在的问题和今后研究的重点.  相似文献   

14.
Carbon fibre reinforced carbon and SiC dual matrices composites (C/C-SiC) show superior tribological properties, high thermal shock resistance and good abrasive resistance, and they are promising candidates for advanced brake and clutch systems. The microstructure, mechanical properties, friction and wear properties, and application of the C/C-SiC composites fabricated by warm compacted-in situ reaction were introduced. The results indicated that the composites were composed of 50-60 wt pct carbon, 2-10 wt pct residual silicon and 30-40 wt pct silicon carbide. The C/C-SiC brake composites exhibited good mechanical properties. The value of flexural strength and compressive strength could reach 160 and 112 MPa, respectively. The impact strength was about 2.5 kJ·m-2. The C/C-SiC brake composites showed excellent tribological performance, including high coefficient of friction (0.38), good abrasive resistance (1.10 μm/cycle) and brake steadily on dry condition. The tribological properties on wet condition could be mostly maintained. The silicon carbide matrix in C/C-SiC brake composites improved the wear resistance, and the graphite played the lubrication function, and right volume content of graphite was helpful to forming friction film to reduce the wear rate. These results showed that C/C-SiC composites fabricated by warm compacted-in situ reaction had excellent properties for use as brake materials.  相似文献   

15.
制备了一种新型的防热隔热一体化材料碳高硅氧纤维增强C-SiC复合材料,沿厚度方向从抗烧蚀层渐次过渡到隔热层,其组成依次是致密C/C—SiC,致密C/C,多孔C/C,通过界面处过渡到变密度多孔HSF/C.这种材料既具有抗烧蚀性能又具有隔热性能.C/CSiC复合材料的烧蚀表面平滑,线烧蚀率只有0.028mm/s.烧蚀性能的提高得益于SiC颗粒原位氧化生成SiO2黏附在碳材料表面,对氧气有一定的阻挡遮蔽作用。密度为0.80g/cm^3的HSF/C材料,热导率为0.59W/mK.在碳纤维与高硅氧织物的界面处,针刺纤维与热解碳的结合良好,密度为1.69g/cm^3的C—HSF/C复合材料界面处的剪切强度达到16.7MPa.  相似文献   

16.
以聚碳硅烷(PCS)、二乙烯基苯(DVB)和SiC微粉为原料制备了碳纤维布增强碳化硅复合材料,考察了SiC微粉含量对材料结构与性能的影响。实验表明,SiC微粉含量过低,材料内部存在大的孔洞,容易造成应力集中,导致材料的力学性能较差;而当SiC微粉含量较高时,在制备过程中微粉对碳纤维机械损伤加大,同样导致材料力学性能下降。当SiC微粉含量为30%(质量分数)时,所制备的材料的力学性能较好,其弯曲强度和拉伸强度分别为246.4MPa和72.5MPa。  相似文献   

17.
采用“化学气相渗透法+先驱体浸渍裂解法”(CVI+PIP)混合工艺制备了薄壁C/C-SiC复合材料构件,研究了C/C多孔体的热处理对C/C-SiC构件密度、变形量及力学性能的影响。研究结果表明:中间热处理可提高C/C的开孔率,有利于SiC的渗入,制备出密度较高的C/C-SiC复合材料构件;中间热处理对构件的层间剪切性能影响不大,但影响构件面内拉伸强度和整体承压性能;中间热处理会导致薄壁C/C-SiC构件在内外径和高度方向发生变形;合适的热处理温度(1600~1800℃)使C/C-SiC构件界面结合强度适中,面内拉伸强度及整体承压性能有了极大的提高;而较高的热处理温度(2100~2300℃)使碳纤维强度下降,使构件拉伸强度及整体承压性能大幅下降。  相似文献   

18.
在C/C 复合材料表面制备了MoSi2-SiC 抗氧化涂层, 分析了涂层工艺对C/C 复合材料组织的影响, 测试了材料的室温弯曲力学性能。结果表明, 该工艺在C/C 复合材料表面生成抗氧化涂层的同时, 基材内部的层间和纤维束界面, 以及孔隙周围也被硅化。C/C 复合材料经涂层工艺处理后, 弯曲断裂行为发生改变, 弯曲强度明显升高,塑性有一定程度的降低。   相似文献   

19.
采用电沉积法与化学气相渗透(CVI)法将碳纳米管(CNTs)分别引入到碳纤维表面和SiC基体中,制得了不同物相电沉积CNTs的C/SiC复合材料(CNTs-C)/SiC和C/(CNTs-SiC)。研究了CNTs沉积物相对C/SiC复合材料力学性能的影响,分析了不同CNTs沉积物相的C/SiC复合材料的拉伸强度及断裂机制。结果表明:相较于未加CNTs的C/SiC复合材料,CNTs沉积到碳纤维表面的(CNTs-C)/SiC复合材料的拉伸强度提高了67.3%,断裂功提高了107.2%;而将CNTs引入到SiC基体中的C/(CNTs-SiC)复合材料的断裂功有所降低,拉伸强度也仅提高了6.9%,CNTs没有表现出明显的增强增韧效果;C/(CNTs-SiC)复合材料与传统的C/SiC复合材料有相似的断裂形貌特征,断裂拔出机制类似,主要为纤维增强增韧,CNTs的作用不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号