首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various shapes of ZnO; multi-petals, rod and spherical were prepared and then applied on cotton fabric for UV-blocking. The ZnO particles were investigated by XRD and SEM. The mixture solution of ZnO with polyvinyl alcohol was applied onto cotton fabrics via electrospinning. The characteristics of the fabric coating were investigated by SEM, XRD, Tensile testing and Atomic absorption spectroscopy (AAS). UV-blocking property was determined by UV-vis spectrophotometer. The results of XRD and SEM on the ZnO powders show that we can produce various shape of ZnO. The investigation by SEM and AAS clearly revealed that ZnO in polyvinyl alcohol nanofibers was effectively deposited on the cotton surface. The sphericals-shaped ZnO coated fabrics show excellent UV-blocking properties. The shape of ZnO shows no considerable effect on the tensile strength of the samples.  相似文献   

2.
Spherical zinc oxide (ZnO) nanoparticles had been successfully synthesized through decomposing zinc borate nanoplatelets at high temperature. The resulted ZnO nanospheres were characterized by X-ray diffraction (XRD), which indicated that ZnO had the hexagonal structure. Field-emission-scanning electron micrographs (SEM) revealed that ZnO nanoparticles had perfect spherical shape with narrow size distribution (average diameters 50 nm). These nanoparticles showed a broad emission band centered at 438 nm using an excitation wave of 325 nm at room temperature. Moreover, the sample was characterized by N2 adsorption-desorption and the pore size distribution showed a sharp peak at 3.1 nm.  相似文献   

3.
利用气相生长系统,通过调控实验参数,制备了多种形貌的ZnO准一维结构,如纳米条带、[011-0]和[21-1-0]取向的单侧生齿的梳状纳米条带、微米尺度的梳状结构,由多节状六角棱柱和八角棱柱组装成的微米条带等.通过X射线衍射、扫描电子显微镜及其所加载的能谱分析和背散射电子衍射仪、高分辨透射电子显微镜等分析技术, 对其中具有代表性的介观结构进行了系统的形貌分析和细致的结构解析.分析出基本的结构单元及其复合体, 揭示了显微尺度下ZnO晶体的外形多样性以及其形态演化中的关联和规律,即ZnO纳米条带、梳状结构和多节状微米条带具有晶体结构上的同一性.  相似文献   

4.
Zinc oxide (ZnO) was site-selectively grown on the palladium (Pd) catalyst through the electroless deposition process under mild conditions, and the effects of deposition temperature and chemical composition on the ZnO crystal growth were investigated. ZnO crystals were synthesized on the UV-patterned Pd catalysts in the aqueous solutions of various dimethylamine borane (DMAB)/Zn(NO3)2 ratio at 30–70 °C. The site-selective deposition was confirmed by X-ray photoelectron spectroscopy (XPS) data and elemental maps of Pd, Zn and oxygen in energy-filtering transmission electron microscopy (EFTEM), and the crystal morphology was observed by scanning electron microscopy (SEM). A strong near band emission at around 390 nm and a weak green emission at around 470 nm were observed in the photoluminescence (PL) spectrum. The ZnO crystals were grown in the following three steps: (1) ZnO fibrils were generated on the Pd catalysts and became sphere-like particles, (2) hexagonal wurtzite crystals initiated to grow from the sphere-like particles, and (3) the crystals grew in two directions—longitudinal and lateral growths giving rod-type or needle-type hexagonal crystals. It was found that longitudinal growth rate increased with increasing deposition temperature or DMAB/Zn(NO3)2 ratio.  相似文献   

5.
Highly structured ZnO layers comprising well-shaped hexagonal rods were prepared by spray pyrolysis deposition of zinc chloride aqueous solutions in the temperature range of 490-560 °C. The layers were characterised by SEM, XRD and SAED. A flat ZnO film evolves into the structured layer consisting of single crystalline hexagonal elongated prisms at growth temperatures close to 500 °C and above. The rise of both the growth temperature and solution concentration increases rod dimensions. The deposition of the 0.1 mol/l solution at ∼500 °C results in crystals with a diameter of 200-300 nm and length of 800 nm. However, the rods grown at 560 °C indicate a width in the range of 400-600 nm and a length of up to 2500 nm. The deposition of the 0.05 mol/l solution at 560 °C results in the rods with a diameter of 100-300 nm and a length of 1500 nm. The increase of the concentration up to 0.2 mol/l results in branched crystals, mainly tripods with a similar leg size of 600-700 nm in width and 3000 nm in length. According to XRD, the ZnO layers grown from the 0.1 mol/l solution in the temperature range of 450-560 °C are c-axis-oriented, independent of morphology. The XRD peaks intensities ratio (I002/I101) of the samples deposited at 560 °C changes from 9 to 1.3 by an increase in the solution concentration from 0.05 to 0.2 mol/l and indicates that c-axis orientation vanishes at higher concentrations. We showed that ZnO nanorods with the length to diameter ratio of 30 can be prepared by spray technique using indium tin oxide-covered glass substrates instead of bare glass.  相似文献   

6.
《Materials Letters》2007,61(8-9):1763-1766
ZnO films deposited on glass, quartz and Al on silicon mono-crystal Si (100) substrates by using the wire explosion technique were investigated by X-ray diffraction (XRD), UV–VIS spectroscopy, scanning electron (SEM) and atomic force microscopy (AFM) measurements. X-ray diffraction measurements have shown that ZnO films are mainly composed of (100), (002) and (101) orientation crystallites. The post-deposition thermal treatment at 600 °C temperature in air has shown that the composite of Zn/ZnO film was fully oxidized to ZnO film. The XRD spectra of the film deposited in oxygen atmosphere at room temperature present high intensity dominating peak at 2h = 36, 32° corresponding to the (101) ZnO diffraction peak. The small fraction of the film (7%) corresponds to the (002) peak intensity at 2h = 34, 42°. This result indicates the good crystal quality of the film and hexagonal wurtzite-type structure deposited by zinc wire explosion. The optical absorption spectra shows the bands at 374, 373 and 371 nm corresponding to deposition conditions. The SEM analysis shows that ZnO films presented different morphologies from fractal network to porous films depending on deposition conditions. AFM analysis revealed the grain size ranges from 50 nm to 500 nm. The nanoneedles up to 300 nm in length were found as typical structures in the film. It was demonstrated that the wire explosion technique is a feasible method to produce ZnO crystalline thin films and nanostructures.  相似文献   

7.
Pure zinc oxide (ZnO) and 2 mol% of Er, 1 mol% of Li individually doped and Er + Li co-doped ZnO nanopowders were synthesized by auto-combustion method. Crystal structure and grain size were characterized by X-ray diffractometer and found that all synthesized samples have hexagonal wurtzite crystal structure. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) studies were used to determine the morphology and size of the nanocrystallites. A UV–VIS measurement shows four absorbance peaks in the visible regions and the band gap is slowly blue shifted after annealing at 800 °C. The presence of Er, Li and the hexagonal wurtzite structure was confirmed by FT-IR studies. FT-Raman spectroscopy has been employed to study the crystalline quality and structural disorders.  相似文献   

8.
Yu Chen  Qian Shi  Feng Zheng 《Materials Letters》2007,61(22):4438-4441
Hydrothermal process was applied to synthesize zinc oxide nanocrystals. X-ray powder diffraction and scanning electron microscopy were used to analyze the crystal structure and surface morphology. XRD pattern analysis showed that the ZnO clusters are single hexagonal phase of wurtzite structure (space group P63 mc) with no impurity of Zn and Zn(OH)2. Also, SEM images revealed that the size of a single ZnO crystal is between 200-500 nm in diameter and 2-5 μm in length. The influence of potassium iodide (KI) as a surfactant on the crystallinity of ZnO has been investigated.  相似文献   

9.
A new method to produce zinc oxide nanocrystals is presented. The method is based on the thermal decomposition of zinc alginate gels. The gels were produced in the form of beads by ionic gelation between a zinc solution and sodium alginate. The wet beads were heated at 800 and 450 °C for 24 h and the products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission electron microscopy (TEM) and micro-Raman spectroscopy. XRD analysis showed that all obtained samples are of wurtzite structure. TEM analysis combined with electron diffraction also showed the presence of single crystals indexed as ZnO hexagonal phase. Crystal size was determined by measuring individual crystals from SEM pictures. It was found that heating temperature and the kind of zinc agent influence the crystal size. Raman scattering revealed the existence of defects in the structure of nanoparticles whose cringing was discussed in the context of recent studies in this field.  相似文献   

10.
Pure hexagonal ZnO nanorods were synthesized by low-temperature (90 °C) solvothermal treatment of zinc acetate in 40-80 wt.% hydrazine hydrate aqueous solutions. The products were characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), selected area electron diffraction (SAED), and room temperature photoluminescence (RTPL) spectra. They show a strong UV emission at around 380 nm upon excitation at 360 nm using a Xe lamp at room temperature. The influence on the quality of the nanorods was investigated while the content of the solvent changed. The as-synthesized ZnO nanorods are promising materials for nanoscale optoelectronic devices due to their excellent UV emission properties.  相似文献   

11.
Undoped and Al-doped ZnO thin films were deposited on glass substrates by the spray pyrolysis method. The structural, morphological and optical properties of these films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis spectroscopy, photoluminescence (PL) and photoconductivity (PC) measurements, respectively. XRD analyses confirm that the films are polycrystalline zinc oxide with the hexagonal wurtzite structure, and the crystallite size has been found to be in the range 20–40 nm. SEM and AFM analyses reveal that the films have continuous surface without visible holes or faulty zones, and the surface roughness decreases on Al doping. The Al-doped films have been found to be highly transparent (>85%) and show normal dispersion behavior in the wavelength range 450–700 nm. The doped films show only ultraviolet emission and are found to be highly photosensitive. Among all the films examined, at 300 °C the 1.0 at% Al-doped film shows the selective high response (98.2%) to 100 ppm acetone concentration over to methanol, ethanol, propan-2-ol, formaldehyde and hydrogen.  相似文献   

12.
Tetrapod-like ZnO nanostructures were fabricated on ZnO-coated sapphire (001) substrates by two steps: pulsed laser deposition (PLD) and catalyst-free thermal evaporation process. First, the ZnO films were pre-deposited on sapphire (001) substrates by PLD. Then the ZnO nanostructures grew on ZnO-coated sapphire (001) substrate by the simple thermal evaporation of the metallic zinc powder at 900 °C in the air without any catalysts. The pre-deposited ZnO films by PLD on the substrates can provide growing sites for the ZnO nanostructures. The as-synthesized ZnO nanostructures were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectrum (FTIR). The results show that the tetrapod-like ZnO nanostructures are highly crystalline with the wurtzite hexagonal structure. Photoluminescence (PL) spectrum of as-synthesized nanostructures exhibits a UV emission peak at ~ 389 nm and a broad green emission peak at ~ 513 nm. In addition, the growth mechanism of ZnO nanostructures is also briefly discussed.  相似文献   

13.
Undoped and Ni doped zinc oxide (Ni–ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH3COOH)2 and hexahydrated nickel chloride (NiCl2·6H2O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 °C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 × 10−3 Ω cm at room temperature.  相似文献   

14.
均匀沉淀法制备纳米氧化锌的研究   总被引:15,自引:0,他引:15  
以硝酸锌、尿素为原料, 采用均匀沉淀法制备纳米氧化锌粉末. 以TEM和BET等方法对产物进行了表征, 发现可获得50nm左右的纳米氧化锌, 粒子 的比表面积为25.6m2/g; XRD分析表明, 产物为六方晶系; 通过XRD、IR和TG-DSC分析, 确定了纳米氧化锌的形成机理.  相似文献   

15.
A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.  相似文献   

16.
ZnO nanowhiskers array films were successfully fabricated using an aqueous solution deposition at 88 °C based on the forced-hydrolysis-initiated-nucleation technique of a template layer. Several zinc salts template layers (anhydrous zinc acetate, layered hydroxide zinc acetate, fibrous monohydrate zinc hydroxonitrate, and two types of layered hydroxide zinc nitrate) were investigated. In-situ forced hydrolysis of low-solubility zinc salts to ZnO nanocrystals at an initial stage promoted homoepitaxial growth of ZnO nanowhiskers array by heterogeneous nucleation on the substrate surface, which were clarified by XRD and FE–SEM. ZnO nanowhiskers array film was successfully fabricated on the low heat-resistant plastic substrate by this technique.  相似文献   

17.

The photoluminescence (PL) and thermoluminescence (TL) studies of un-doped and Eu doped zinc oxide (ZnO) nanophosphors are presented in this paper. The paper also includes characterization by XRD and SEM for structural and morphological studies of chemically synthesized ZnO nanoparticles by using zinc acetate and ammonia solution. Thiourea was used for capping. The hexagonal structure of the undoped and Eu doped ZnO nanoparticles was observed. The XRD of rare earth doped sample showed an extra peak attributed to Europium oxide. The sizes of samples were ranging from 55 to 80 nm. SEM image of undoped ZnO nanoparticle showed flower like structure, whereas, no such shape was found for Eu doped ZnO nanoparticles. The excitation wavelength dependent PL and colour chromaticity diagram for both undoped and Eu doped ZnO was studied. Five samples of Eu doped ZnO, with 0.5%, 1%, 2.5%, 3% and 3.5% molar concentration of Eu were prepared. The variations in PL and TL with different concentrations of Eu were also studied. The Maximam PL and TL intensity was recorded for the samples containing 3% of Eu. The increase in the TL intensity for both the samples was found with increasing γ dose (100–1500 Gy) without any saturation sign. The variations in TL intensity with changing heating rate (5–12 °C/s) were also studied. No change of TL glow peak position was seen for Eu doped sample. A linear increase of TL peak intensity with γ dose suggests that, this phosphor could be used for dosimetry.

  相似文献   

18.
We report the large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles by the esterification between zinc acetate and alcohol. The morphology of the ZnO nanoparticles was investigated by transmission electron microscopy, selected area electron diffraction and scanning electron microscopy measurements. The synthesized ZnO nanoparticles are single-crystalline with hexagonal phase and show a strong UV emission at −378 nm due to the excellent crystallinity of particles. A possible formation mechanism of the hexagonal cone-shape structure is proposed. Furthermore, the as-prepared ZnO particles exhibit high photocatalytic activity for the photocatalytic degradation of Rhodamine B, indicating that the ZnO nanostructure is promising as a semiconductor photocatalyst.  相似文献   

19.
The present study investigates the electrical and sensing properties of mechanically compacted pellets of nanosized zinc oxide powders synthesized by chemical method at room temperature in alcohol base using Triethanolamine (TEA) as capping agent. Synthesized ZnO particles has been characterized for its optical, structural, morphological properties using UV–VIS spectrophotometer, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ZnO particles have hexagonal wurtzite structure and the particles are of 20–30 nm in size. The electrical properties of the prepared material have been investigated with Impedance Spectroscopy at different temperatures and frequencies and other laboratory setup. Resistivity, IV curves, AC impedance of ZnO nanoparticles pellets with temperature was investigated and response was compared with commercial ZnO. Piezoelectric and oxygen sensing property of ZnO were also examined. Dynamic hysteresis of sintered ZnO pellet using axis ACCT TF analyzer 2000HS did not show polarization retention by sample. Oxygen sensing of ZnO pellet has been investigated for different concentrations of oxygen for the temperature range of 200–350 °C. The decrease of the current flow through the ZnO pellet with increasing oxygen concentration indicates the application of ZnO in oxygen sensing. The prepared ZnO particles were also used for preparing nanofluids of different concentrations and were characterized by measuring thermal conductivity using hot wire method which shows sigmoidal behavior over a temperature range of 10–50 °C.  相似文献   

20.
L.P. Dai  G. Chen  C.F. Tang  M. Wei  Y. Li 《Vacuum》2007,81(8):969-973
Zinc oxide (ZnO) films were grown on silicon (1 0 0) substrates by single-source chemical vapor deposition (SSCVD). X-ray diffraction (XRD) showed that ZnO thin films have a polycrystalline hexagonal wurtzite structure with (1 0 0) and (1 0 1) orientation, i.e., a-b-axis orientation. Atomic force microscopy (AFM) and scanning electronic microscopy (SEM) showed the films to be of relatively high density with a smooth surface. X-ray photoelectron spectroscopy (XPS) showed that the deposited films were very close to stoichiometry but contained a small number of zinc instead of O vacancies as normally found with ZnO films produced by other methods. These results were also confirmed by photoluminescence (PL) measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号