首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
竹纤维/聚乳酸可生物降解复合材料自然降解性能   总被引:1,自引:0,他引:1       下载免费PDF全文
通过注射成型工艺制备竹纤维/聚乳酸(BF/PLA)可生物降解复合材料。利用X射线衍射(XRD)、凝胶渗透色谱(GPC)、三维视频显微镜及扫描电镜(SEM)等分析手段研究了BF/PLA复合材料自然降解性能。研究结果表明:BF/PLA复合材料自然降解过程中BF首先降解,PLA逐步分层缓慢降解,复合材料质量逐渐减少;PLA分子链上酯基与水反应,分子链不断断裂,结晶度减小,平均分子量降低,分子量分布变窄;复合材料颜色变深,表面变得粗糙不平,部分裸露的BF清晰可见,其拉伸强度和冲击强度逐渐下降。12个月后,BF/PLA复合材料质量损失率达到8.87%,PLA重均分子量降低了25.9%,复合材料的冲击强度和拉伸强度分别降低了44.0%和43.8%。BF/PLA可生物降解复合材料在土壤中的自然降解效率较低。  相似文献   

2.
竹纤维增强聚乳酸复合材料热老化性能   总被引:3,自引:0,他引:3  
采用氢氧化钠和异氰酸酯处理的界面调控方法对竹纤维(BF)增强聚乳酸(PLA)复合材料界面进行调控,通过注射成型工艺制备BF/PLA复合材料。利用FTIR、XRD、凝胶渗透色谱及SEM等分析手段研究了BF/PLA复合材料热老化性能。研究发现: 热老化过程中PLA分子链中的C O不断水解,分子链的C—O断裂生成聚合度更低的小分子量的PLA,PLA结晶度减小,PLA与BF的接合界面被破坏,拉伸强度和冲击强度随老化时间的增加逐渐降低。BF/PLA复合材料在80℃热老化16天后拉伸强度和冲击强度分别降低了75%和77.6%,在100℃热老化32 h后拉伸强度和冲击强度分别降低了80.3%和83.4%。温度对BF/PLA复合材料老化影响显著,温度越高,老化速度越快。  相似文献   

3.
聚乳酸的链段结构对其热力学性能有重要影响。过氧化二异丙苯(DCP)作为自由基引发剂,通过反应性共混可以诱导聚合物分子链支化、交联,进行功能化改性。文中制备了一系列不同DCP添加量的PLA/DCP共混物,重点研究了DCP含量对聚乳酸(PLA)熔融结晶行为、流变行为、耐热性能和力学性能的影响。结果表明,DCP可以诱导PLA的分子链支化和交联。当DCP质量分数大于0.5%时,交联反应占据主导作用,共混扭矩显著升高、复数黏度增大。DCP引发PLA分子链自交联,不熔的PLA链段可以作为成核中心,大幅提高了PLA成核密度,进而提高其结晶速率和结晶度。DCP的添加可以有效地提高聚乳酸的拉伸强度,但对断裂伸长率和冲击强度的影响较小。经过退火,共混物的力学性能保持不变,共混物的耐热性能大幅提高。当DCP质量分数大于0.5%时,共混物的维卡软化温度可以提高到155℃。  相似文献   

4.
竹纤维/聚乳酸复合材料自然老化性能研究   总被引:1,自引:0,他引:1  
李新功  郑霞  吴义强  陈卫民  凌启飞 《功能材料》2013,44(11):1526-1530
采用氢氧化钠(NaOH)+异氰酸酯(MDI)处理的界面调控方法对竹纤维/聚乳酸复合材料界面进行调控,通过注射成型工艺制备竹纤维/聚乳酸复合材料。利用傅里叶红外光谱、X射线衍射、凝胶渗透色谱及扫描电镜等分析手段研究了竹纤维/聚乳酸复合材料的自然老化性能。研究发现,自然老化过程中,在水、光、热和氧的协同作用下,复合材料中的聚乳酸分子不断产生水解,分子链断裂,分子量减小,聚乳酸由一定的结晶态逐渐转变为无定形态,结晶度减小,聚乳酸自身强度不断下降,聚乳酸与竹纤维的粘结力不断降低,二者接合界面被破坏,复合材料质量不断减少、力学性能不断下降。老化137d后,复合材料表面出现明显的裂纹,拉伸强度和冲击强度分别降低了69.6%和75.8%。竹纤维/聚乳酸复合材料自然老化较严重,需要采用一定的技术手段进一步改善复合材料户外使用性能。  相似文献   

5.
用熔融共混法制备了氯化铁(FeCl3)催化聚乳酸(PLA)快速降解材料。PLA材料降解的速率提高了10倍,但是PLA/FeCl3在加工过程中分子量大幅度减小,使力学性能和可加工性能降低。为了减小PLA/FeCl3在熔融加工中的过度降解,将有优良扩链和增塑效果的亚磷酸三苯酯(TPPi)引入PLA/FeCl3体系中,用熔融共混制备TPPi改性PLA/FeCl3材料,使其具有一定的综合力学性能。通过碱溶液降解实验和多种测试研究了样品的降解速率和综合性能。结果表明,TPPi和FeCl3 的添加量之比为3∶1的P3-1样品性能最优,拉伸强度和弯曲强度分别达到43.78 MPa和99.04 MPa,在碱液中降解8d其质量损失率为65.76%,远大于纯聚乳酸的4.67%。含2.95 phr FeCl3的样品能在碱液中产生高降解速率,加工时不发生过度降解,由此制备出一种可快速降解并保持良好力学性能的聚乳酸改性材料。  相似文献   

6.
为提高聚乳酸(PLA)的降解性,将竹纤维(BF)和海藻酸钠(SA)与PLA共混制备复合材料,并进行土壤降解试验以探究其降解性能,检测降解后复合材料的质量损失率、表面微观结构、官能团变化、热性能和结晶度等指标。结果表明:SA和BF均可提升PLA复合材料降解的质量损失率。降解21天后,BF/PLA和SA-BF/PLA复合材料的质量损失率分别为0.83%和2.54%,相较于纯PLA的0.11%分别提高了7.55和23.09倍。降解后,SA-BF/PLA复合材料的表面出现大量的裂痕与凹陷,这增大了复合材料与土壤中的接触面积,进而加速了复合材料的降解。纯PLA在降解过程中质量损失率很低,但降解后其羰基含量明显上升,表明土壤降解会导致部分PLA长链高分子断裂为小分子。相比于纯PLA,BF/PLA和SA-BF/PLA复合材料的结晶度大幅度降低,表明SA和BF可降低PLA复合材料的结晶度,提高其降解性。由此可见,SA和BF可提升PLA复合材料的降解性能。此研究结果将为高降解性PLA复合材料的制备提供理论参考。  相似文献   

7.
采用熔融共混制备了聚乳酸/柠檬酸基聚酯(PLA/PEGCA)共混物(质量比85/15),通过对共混物在缓冲溶液中的失重率、吸水率、PLA相对分子质量、表面形貌和力学性能的测定,研究了其降解行为,并同纯PLA做了对比。结果表明,由于PEGCA的亲水性强,缓冲溶液容易渗透到材料内部,所以PLA/PEGCA共混物相对于纯PLA有更好的降解能力。12周时,PLA/PEGCA共混物的失重率与吸水率分别为0.8%和13.0%,明显大于纯PLA。共混物中PLA的组分相对分子质量下降程度大于纯PLA。随着降解时间的延长,共混物表面出现明显裂纹,力学性能降低,12周后冲击强度和拉伸强度分别为7.8 MPa和11.3 MPa,而纯PLA变化不大。  相似文献   

8.
采用甲基丙烯酸环氧丙酯与丙烯酸酯类单体共聚的环氧型丙烯酸酯橡胶(ACM)增韧聚乳酸(PLA)。冲击测试结果发现,随着ACM含量的增加,共混物冲击强度先增加后降低,增韧剂最佳的质量分数为25%,冲击强度可达到670J/m;拉伸性能测试表明,随着ACM含量增加,共混物的杨氏模量和屈服应力逐渐降低;ACM的玻璃化转变温度随着橡胶组分的增加逐渐上升,PLA相的玻璃化转变温度变化不明显;差示扫描量热(DSC)测得加入ACM后,PLA冷结晶温度降低;扫描电镜(SEM)发现橡胶粒子质量分数为10%时能均匀分散在PLA中,ACM含量增加,相区尺寸变大;形变区观察发现,ACM橡胶粒子发生空洞化,基体发生剪切屈服。  相似文献   

9.
功能性光致变色木塑复合材料(PWPC)使用寿命通常较短,因此本研究将抗氧剂1010和光稳定剂770引入到PWPC中,以改善复合材料的力学和耐光疲劳等性能。采用熔融共混法制得杨木粉/聚乳酸(WF/PLA)基光致变色复合材料,通过熔融沉积技术(FDM)打印成型,对制备的WF/PLA复合材料力学、界面相容性、热稳定性和耐光疲劳性能进行分析表征。与WF/PLA复合材料相比,当只添加抗氧剂1010时,WF/PLA复合材料拉伸、弯曲和冲击强度分别提高了42.58%、23.25%、6.52%;只添加光稳定剂770时,WF/PLA复合材料拉伸强度提高,弯曲强度和冲击强度均下降。当抗氧剂1010与光稳定剂770以质量比为1∶1添加到WF/PLA复合材料中时,在这两种助剂的协同作用下,WF/PLA复合材料的拉伸强度提高了1.8%,弯曲和冲击强度分别减小了9.3%和22.1%,相比于其他复配体系样品,力学性能降低幅度最低。此外,与WF/PLA复合材料相比,抗氧剂1010与光稳定剂770质量比为1∶1的WF/PLA复合材料的热降解性能和耐光变疲劳性能得到改善,质量损失为5%时的温度为219.84℃。老化第10天,其表面颜色变化值ΔE由5.3增至6.7,增加了26.7%。   相似文献   

10.
李新功  凌启飞  吴义强 《功能材料》2013,(21):3094-3098
以1.5%异氰酸酯(MDI)界面改性剂改性处理后的竹纤维和聚乳酸为原料,通过注射成型工艺制备竹纤维增强聚乳酸复合材料,探讨竹纤维质量分数对复合材料界面、力学性能、吸水率、热性能的影响。结果表明,随着竹纤维质量分数的增加,复合材料拉伸强度、冲击强度、存储模量以及热稳定性均先增大后减小,24h吸水率逐渐增大,损耗因子逐渐降低。竹纤维质量分数为50%时,复合材料的拉伸强度和冲击强度分别达到最大值63.2MPa和11.6kJ/m2,复合材料存储模量最大,热稳定性最好。  相似文献   

11.
以一种苯乙烯-丙烯酸缩水甘油酯共聚物(Joncryl○RADR-4370S)为扩链剂,通过熔融挤出支化改性聚乳酸(PLA),制备了高支化聚乳酸材料,并通过转矩流变仪及毛细管流变仪、GPC、DMA、万能拉伸试验机等研究了不同扩链剂用量对支化改性聚乳酸流变性能、重均相对分子质量及其分布、链结构、动态力学性能和力学性能的影响。结果表明,随着扩链剂含量的增加,支化聚乳酸的平衡扭矩、熔体黏度、重均相对分子质量及其分布(PDI)、拉伸强度、断裂伸长率和缺口冲击强度先增大后减少,储能模量增大,在四氢呋喃溶剂中的链构象由棒状向线团状、球状演变。扩链剂用量为1.5 phr时,支化聚乳酸的平衡扭矩、重均相对分子质量、拉伸强度、断裂伸长率和缺口冲击强度均达到最大值,分别为15.80 N·m,1.96×105,89.6 MPa,7.5%和35.0 k J/m2;扩链剂用量为0.9 phr时,支化聚乳酸的相对分子质量分布最宽,为2.04。  相似文献   

12.
用高速混合-平板热压法制备了70%木纤维含量的木纤维-聚乳酸(WF-PLA)复合材料,研究了不同聚乳酸(PLA)对WF-PLA复合材料的耐水性、弯曲强度和弯曲模量、PLA分子量及热性能的影响。结果表明,PLA与木纤维复合后,弯曲模量明显增加,复合材料中PLA分子量和熔融温度明显下降;PLA性能对WF-PLA复合材料性能影响显著,WF-PLA复合材料中PLA分子量随PLA原料分子量下降而下降,高分子量PLA制备的WF-PLA复合材料耐水性更好,弯曲强度和弯曲模量更高;在PLA改性时,应避免引起PLA分子量下降。  相似文献   

13.
目的添加适量椰纤维(CF)改善聚乳酸(PLA)的力学性能,以适应产品的包装。方法采用熔融共混法制备不同CF含量的CF/PLA复合材料。通过力学性能测试、扫描电子显微镜观察和动态热力学性能测试,探讨添加不同含量的碱洗CF对复合材料力学性能的影响。结果与纯PLA相比,复合材料的拉伸强度降低,冲击强度增大,储能模量增大,玻璃化转变温度降低。当碱洗CF质量分数为3%时,复合材料的冲击强度比纯PLA增加了24%。结论添加CF有利于提高复合材料的力学性能,碱液浸泡更有利于改善CF和PLA基体的界面相容性。  相似文献   

14.
以不同粒径的羧基封端生物降解聚酯弹性体粒子(CBEP)改性聚乳酸(PLA)制备了CBEP/PLA复合材料,对复合材料的力学、结晶与降解等性能进行了测试,并研究了CBEP对PLA性能的影响及作用机理。结果表明,CBEP可显著提高PLA的韧性,复合材料样条在拉伸时出现了颈缩现象,尤其是添加了7.5% (与PLA的质量比)粒径在200 nm的CBEP-a的复合材料的断裂伸长率由纯PLA的4.6%提高至155%,而复合材料的缺口冲击强度最高达到了纯PLA的2倍。同时CBEP可提高PLA的结晶性能,其中添加7.5%粒径在200 nm的CBEP-a的复合材料的等温结晶半结晶时间较纯PLA缩短了21.4%。而降解实验结果表明,添加了10%粒径在200 nm的CBEP-a的复合材料在脂肪酶环境下与土壤掩埋环境下的降解质量损失率分别由纯PLA的0.34%与0.25%,提高至2.52%与1.20%。CBEP/PLA复合材料在生物医药与环保材料等领域具有广阔的发展与应用前景。   相似文献   

15.
以1.5%异氰酸酯(MDI)界面改性剂改性处理后的竹纤维和聚乳酸为原料,通过注射成型工艺制备竹纤维增强聚乳酸复合材料,探讨竹纤维质量分数对复合材料界面、力学性能、吸水率、热性能的影响。结果表明,随着竹纤维质量分数的增加,复合材料拉伸强度、冲击强度、存储模量以及热稳定性均先增大后减小,24h吸水率逐渐增大,损耗因子逐渐降低。竹纤维质量分数为50%时,复合材料的拉伸强度和冲击强度分别达到最大值63.2/MPa和11.6/kJ/m2,复合材料存储模量最大,热稳定性最好。  相似文献   

16.
目的 研究聚乳酸复合膜的降解性能,加快聚乳酸材料降解速率。方法 选取淀粉、羧甲基纤维素钠(CMC)、聚乙二醇(PEG)等3种材料,与聚乳酸混合制备4种不同的复合膜。测定复合膜的透光率、力学性能、热性能等指标,使用红外光谱仪对复合膜的基团组成进行表征,使用磷酸盐缓冲液浸泡,测试其降解性能。结果 红外光谱结果显示PLA膜与PLA复合膜的吸收峰没有明显的差别,这证明改性材料与聚乳酸没有发生化学反应。复合膜的DSC曲线显示,添加改性剂后,熔融温度变化不大,无明显影响。降解性能方面,按PLA与复合物的质量比9∶1,8∶2,7∶3,6∶4,5∶5制备多种复合膜,其中质量比9∶1,7∶3,5∶5的PLA/淀粉复合膜在第70天降解率分别为24.11%,24.8%,35.6%;PLA/CMC复合膜的3种质量比降解率为27.64%,30.37%,45.2%。按照PLA与PEG质量比为99∶1,98∶2,97∶3,96∶4,95∶5制备了PLA/PEG复合膜,其中质量比为99∶1,97∶3,95∶5的PLA/PEG复合膜在第70天的降解率分别为25.45%,38.83%,45.83%。PLA/淀粉/PEG复合膜是在PLA/淀粉复合膜的基础上添加PEG制备的,复合膜成分与PEG的质量比为99∶1,98∶2,97∶3,96∶4,95∶5,其中99∶1,97∶3,95∶5这3种复合膜的降解率为40.52%,49.54%,55.67%。各种复合膜的降解率均远优于PLA膜2.5%的降解率。结论 复合材料的添加改变了聚乳酸薄膜的透光性能,增强了薄膜的拉伸强度和断裂伸长率。改性材料的添加能够在不影响聚乳酸本身结构的情况下,显著增强聚乳酸的降解率。  相似文献   

17.
镁/聚乳酸复合材料的制备与表征   总被引:2,自引:0,他引:2  
为有效中和聚乳酸降解过程后的酸性,提出镁颗粒与聚乳酸的复合材料新体系。采用造粒-注塑工艺制备了3%Mg/聚乳酸(PLA)复合材料,通过扫描电镜(SEM)、X射线衍射(XRD)等手段表征了产物的微观形貌与物相组成;测试了力学性能;采用模拟体液浸泡手段研究了复合材料的降解行为。结果表明,采用造粒、注塑工艺可以制备这类复合材料,少量镁颗粒的加入对聚乳酸的力学性能影响不明显,其中拉伸强度和延伸率分别下降了6%和12.5%,但弯曲强度有所增加。聚乳酸降解后的酸性得到了有效的中和,聚乳酸浸泡30 d后的pH值为6.28,而3%Mg/PLA复合材料浸泡30 d后的pH值仅为6.85。  相似文献   

18.
玻璃纤维/聚乳酸复合包装薄膜的制备及表征   总被引:2,自引:2,他引:0  
尹兴  孙诚  王蕊  卢通文 《包装工程》2016,37(13):19-23
目的添加适量的玻璃纤维(GF)改善聚乳酸(PLA)的力学性能以适应产品的包装。方法聚乳酸与玻璃纤维共混制备复合包装材料,为了增加2种物质的相容性,加入KH550改性玻璃纤维以增强材料的力学性能。测试该复合材料力学性能、透光率、红外谱图,并用扫描电子显微镜观察复合包装材料的断面形貌。结果聚乳酸中添加一定量的玻璃纤维后,复合薄膜的力学性能增强。添加质量分数为15%的玻璃纤维,薄膜的拉伸强度最大;添加质量分数为25%的玻璃纤维时,冲击强度最大;用质量分数为1%的KH550偶联剂改性玻璃纤维,明显增强了GF和PLA的相容性,拉伸强度明显提高;GF所占比例愈大,GF/PLA复合薄膜材料的透光率越低,雾度越高,对包装材料的可视性有一定的影响。结论玻璃纤维具有超强的增强效果,其在改善聚乳酸脆性方面具有显著的意义和广阔的发展前景。  相似文献   

19.
辛酸亚锡催化下开环聚合制备聚乳酸(DL-PLA)-聚乙二醇(PEG)-聚乳酸三嵌段共聚物.用GPC、DSC、1 H-NMR、质量损失、静态接触角等方法在pH=7.4磷酸盐缓冲液中,37℃下研究了分子量Mn=400、1000和4000的PEG改性DL-PLA的降解行为.结果表明,PEG嵌段增强了共聚物的亲水性,降低了共聚物Tg,加速了共聚物降解,随着PEG分子量增加及两端DL-PLA链段增长,共聚物分子量下降速率加快.由研究结果得出,共聚物降解期间DL-PLA链段中的酯键随机断裂,PEG两端DL-PLA链段逐渐变短;降解后期DL-PLA链段进一步变短,并有短链DL-PLA均聚物产生,当PEG两端DL-PLA链段足够短时,共聚物在介质中溶解.  相似文献   

20.
用酸解法制备了纤维素纳米晶(CNC),然后用醋酸乙烯酯和丙烯酸丁酯通过自由基聚合的方法对CNC进行包覆改性,制得改性纤维素纳米晶(m-CNC),再将m-CNC和聚乳酸(PLA)通过溶液浇注法制备复合材料。利用透射电子显微镜、红外光谱、扫描电子显微镜、广角X射线衍射、力学和降解性能测试研究了m-CNC/PLA复合材料的结构与性能。结果表明,酸解法制备的棒状CNC直径约为5 nm~26 nm,长度约为40 nm~380 nm。随着m-CNC含量的增加,m-CNC/PLA复合材料的拉伸强度呈上升趋势,当m-CNC的含量为8%时,m-CNC/PLA复合材料的拉伸强度与纯PLA的相比增加了43.3%。在PLA中加入适量的CNC或m-CNC,PLA的结晶度提高而晶粒尺寸减小。m-CNC的加入减缓了m-CNC/PLA复合材料在模拟体液中的降解速率,但加速了其在土壤中的降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号