首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以壳聚糖(CTs)﹑马来酸酐(MA)﹑2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,过硫酸铵(APS)为引发剂,N,N’-亚甲基双丙烯酰胺(NMBA)为交联剂,采用紫外光固化的方法合成CTs/AMPS/MA三元共聚高吸水树脂。研究了反应条件对树脂吸水性能的影响,结果表明,当固含量为15.87%,nAMPS∶nMA=14∶1,ω(CTs)=2%,ω(NMBA)=2.5%,ω(APS)=0.3%,pH=3,固化时间为5min时可得到具有较好吸水性的高吸水树脂,在蒸馏水中的最大吸水率为555g/g。采用FT-IR和TGA对树脂结构及热稳定性进行表征,并对其吸水速率及动力学进行分析,反吸液能力测定表明制备的树脂具有一定的降解性。  相似文献   

2.
以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾(KPS)为引发剂,采用微波辐射方法制备了凹凸棒(APT)接枝2-丙烯酰胺基-2-甲基丙磺酸(AMPS)/丙烯酰胺(AM)耐盐性高吸水性树脂。探讨了单体配比、微波功率(P)、中和度(N)、APT用量、NMBA用量和KPS用量对待测液体吸水倍率的影响,用红外光谱(FT-IR)、X射线衍射(XRD)对高吸水性树脂进行了表征。实验结果表明,在最佳合成条件(n(AM)∶n(AMPS)=4.5∶1,P=390W,N=75%,w(NMBA)=0.08%,w(KPS)=0.6%,w(APT)=7.5%)下树脂在去离子水中的吸水倍率为1460 g/g,吸生理盐水倍率为114 g/g,树脂具有较强的耐盐性能;红外光谱(FT-IR)和X射线衍射(XRD)表征显示,凹凸棒和有机单体之间发生了接枝共聚反应,其反应仅在凹凸棒的表面进行,单体并没有插入到凹凸棒的层间。  相似文献   

3.
在没有氮气保护和引发剂作用下,以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,采用静置热聚合法成功合成了2-丙烯酰胺基-2-甲基丙磺酸(AMPS)/丙烯酰胺(AM)/壳聚糖(CTS)三元共聚高吸水树脂。同时研究了反应条件对树脂吸水倍率的影响,并借助FT-IR对树脂的分子结构进行了分析。实验结果表明,所合成的树脂最佳反应条件为:n(AM)∶n(AMPS)=3∶1,ω(CTS)=2%,ω(NMBA)=0.05%,pH=1.5,固含量为15%。在此条件下合成的高吸水树脂室温下最大吸蒸馏水倍率为1302g/g。  相似文献   

4.
在没有氮气保护的作用下,以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,以过硫酸铵(APS)为引发剂,采用静置热聚合法合成2-丙烯酰胺基-2-甲基丙磺酸(AMPS)/丙烯酰胺(AM)/羧甲基纤维素钠(CMC)三元共聚高吸水树脂。研究了反应条件对树脂吸水率的影响,并借助FT-IR、TG-DTA和偏光对树脂的分子结构、热稳定性和表面形态进行了分析。实验结果表明:所得树脂的最佳反应条件为:n(AM)∶n(AMPS)=1∶1、ω(APS)=0.45%、ω(CMC)=9%、ω(NMBA)=0.085%和pH=1.2,在此条件下合成的高吸水树脂室温下最大吸蒸馏水倍率为909g/g。  相似文献   

5.
采用紫外固化法,以淀粉(St)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)为单体,N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,在不加引发剂和任何气氛保护下,合成出St/AMPS/AM/共聚高吸水性树脂,考察了反应条件对树脂吸水倍率的影响,并借助红外、偏光显微镜对树脂的分子结构及表面形态进行了表征。结果表明,在优化条件下合成的高吸水性树脂吸蒸馏水倍率为2354g/g,吸盐率可达145g/g(0.1mol/L)。  相似文献   

6.
以N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,在没有引发剂和氮气保护的情况下,利用静置法制备以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)、丙烯酰胺(AM)、顺丁烯二酸酐(MA)为单体的四元共聚高吸水树脂,通过对反应条件优化,得到了最佳工艺条件:单体配比n(AMPS)∶n(AA)∶n(AM)∶n(MA)=1∶1∶1∶1,ω(NMBA)=0.03%,pH=2.2,在此条件下树脂吸蒸馏水倍率达到533倍。初步对树脂的吸液能力、耐热保水性、吸水速率、以及反复吸液性进行了研究,同时借助FT-IR、TG-DTG和显微镜对其结构、热稳定性及表面形态进行了表征。  相似文献   

7.
以N,N,-亚甲基双丙烯酰胺(NMBA)为交联剂,在无氮气保护和不添加任何引发剂条件下,采用紫外辐照法合成魔芋粉(KF)/丙烯酰胺(AM)/马来酸酐(MA)/2-丙烯酰胺基-2-甲基丙磺酸(AMPS)共聚吸附树脂,研究了单体摩尔比、pH、交联剂用量、魔芋粉含量对树脂吸附亚甲基蓝的影响,并借助FT-IR、TG对树脂的结构、热稳定性进行了研究。实验表明:在优化条件下,n(AMPS)∶n(AM)∶n(MA)=2.5∶0.5∶0.4;w(KF)=2.5%,pH=3,w(NMBA)=0.35%,tcuring=5min时合成的树脂对亚甲基蓝的吸附量为104.14mg/g。  相似文献   

8.
以N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,壳聚糖(CTS)、丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)为原料,借助微波辐射法合成CTS/AM/AMPS三元共聚吸水树脂,合成最优条件为:pH=4.0,微波反应功率为195W,AM∶AMPS(摩尔配合比)=5∶1,CTS用量3.3%(wt,质量分数,下同),NMBA用量0.06%,在此条件下制得的树脂最高吸水率达1340g/g。同时,采用FT-IR和TG-TGA对树脂结构及热稳定性进行分析。结果表明三元共聚吸水树脂热分解温度在360℃,具有较好的热稳定性。  相似文献   

9.
静置水溶液聚合法合成AA/AM/AMPS高吸水性树脂   总被引:1,自引:0,他引:1  
以N,N'-亚甲基双丙烯酰胺(NMBA)和聚乙烯醇(PVA)为复合交联剂,通过静置水溶液聚合法制备了丙烯酸(AA)/丙烯酰胺(AM)/2-丙烯酰胺基-2-甲基丙磺酸(AMPS)共聚高吸水性树脂.探讨了反应条件对树脂吸水性能的影响,并通过FT-IR、SEM等技术对树脂的分子结构及表面形态进行了表征分析.实验结果表明:优化条件下所合成的树脂最高吸蒸馏水倍率为1641倍.以NMBA和PVA为复合交联剂,可以优化树脂的交联网络结构,且PVA在树脂中具有双重作用.  相似文献   

10.
在交联剂N,N′-亚甲基双丙烯酰胺(NMBA)的作用下,单体2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)、顺丁烯二酸酐(MA)和淀粉(St)以溶液热聚合的方式合成四元共聚吸附剂。采用单因素法探究了反应条件对树脂吸附亚甲基蓝染料性能的影响,得到最佳的树脂合成工艺条件。实验结果表明:n(AMPS)∶n(AA)∶n(MA)∶W(St)=1∶0.5∶0.1∶1.98(wt,质量分数,下同),pH=2,W(NMBA)=0.1%,固含量为31%时,该树脂的吸附量最大,为106.35mg/g。  相似文献   

11.
AM/AMPS高吸水性树脂的超声制备与性能研究   总被引:6,自引:2,他引:4  
以N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,在不加引发剂和没有气氛保护的情况下,采用超声辐射聚合的方法制备了丙烯酰胺(AM)/2-丙烯酰胺基-2-甲基丙磺酸(AMPS)共聚高吸水性树脂,借助FT-IR和AFM对树脂的分子结构及表面形态进行了表征,并通过单因素实验得到最佳反应条件下合成的树脂吸蒸馏水倍率和吸生理盐水倍率分别为l627及102倍.  相似文献   

12.
以N,N′-亚甲基双丙烯酰胺(NMBA)作为交联剂,采用静置热聚合法制备了AMPS/AM/AA/CTS四元共聚吸附树脂。通过单因素法和正交试验法,得到了合成最佳吸附阳离子染料结晶紫的吸附树脂的工艺条件,并运用FT-IR和TG-DTG对树脂的分子结构和热稳定性进行了分析。实验结果表明:该树脂的最佳吸附量的工艺条件是:n(AMPS)∶n(AM)∶n(AA)∶W(CTS)=3∶1∶5∶3%,pH=4.69,w(NMBA)=0.094%,固含量为36.2%;最佳吸水倍率的工艺条件是:n(AMPS)∶n(AM)∶n(AA)∶W(CTS)=3∶0.7∶3.5∶2%,pH=5.61,w(NMBA)=0.119%,固含量为36.59%。所得树脂最大吸附量为83.8mg/g,在此条件下其最大吸水倍率为1035g/g,并且该树脂具有较好的热稳定性。  相似文献   

13.
二元共聚高吸水性树脂PAMA的吸液与保水性能   总被引:2,自引:0,他引:2  
采用溶液聚合方法,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体,N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾(KPS)为引发剂合成了高吸水性树脂PAMA,并进行了吸液、保水性能研究。研究表明该树脂吸水倍率2451 g/g,吸生理盐水倍率119 g/g,对纯甲醇的吸液倍率(277 g/g);对吸液速率结果通过回归分析得吸蒸馏水时Qw=862.6t0.1855,吸生理盐水时Qs=52.0t0.1317。该吸水树脂具有优良的耐温保水性能和较好的热稳定性,且保水率与恒温时间呈线性关系,并能有效提高砂土的饱和含水量,可对砂土进行有效的改良。  相似文献   

14.
不加引发剂微波法合成高吸水性树脂的性能研究   总被引:3,自引:0,他引:3  
以N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,在不加引发剂和无氮气保护的条件下,利用微波辐射技术合成淀粉/丙烯酰胺(AM)/2-丙烯酰胺基2-甲基丙磺酸(AMPS)共聚高吸水性树脂,研究了树脂的吸水动力学及保水性能;并对其结构、热稳定性及表面形态进行了表征分析,对其反应机理进行了初步探讨.结果表明,无引发剂下微波辐射聚合可以简化合成工艺,同时提高树脂的吸水速率.  相似文献   

15.
通过水溶液自由基聚合的方法,以丙烯酰胺(AM)、丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料制备了AM类高吸水性树脂。室温条件下,考察了各反应因素对树脂吸水性能的影响,通过正交优化试验确定最佳的合成条件为:单体总浓度35%,单体质量配比5.0∶5.0∶2.0,引发剂浓度0.4%,交联剂浓度0.55%,吸水膨胀倍率高达250g/g之多。采用红外光谱(IR)和扫锚电镜(SEM)分别对合成的高吸水性树脂表征并进行结构分析。  相似文献   

16.
采用水溶液聚合的方法,以丙烯酰胺(AM)和丙烯酸(AA)为单体,以过硫酸钾(KPS)和亚硫酸氢钠为引发剂,N,N′-二甲基双丙烯酰胺(NMBA)为交联剂,来制备丙烯酸-丙烯酰胺合成吸水树脂。研究了其工艺过程并对其性能进行了测试。结果表明:在30℃下,丙烯酸-丙烯酰胺共聚树脂的最佳制备条件为:单体浓度为25%,n(AA)∶n(AM)=4∶1,中和度为75%,交联剂的用量和引发剂的用量分别为单体质量的0.04%和0.3%,所得到的树脂最佳吸纯水倍率及最佳吸0.9%(质量分数)NaCl溶液倍率分别为980g/g和95g/g。  相似文献   

17.
以交联羧甲基纤维素(CCMC)、丙烯酰胺(AM)为原料,过硫酸钾(KPS)为引发剂,N,N′-亚甲基双丙烯酰胺(NMBA)为交联剂,通过微波辐射法制备了高吸水性树脂AM-g-CCMC。探讨了NMBA、KPS和CCMC用量对树脂吸水倍率的影响;采用IR,TG-DTA和SEM对树脂进行了表征。结果表明,在最佳制备条件AM∶CCMC∶NMBA∶KPS=50∶5∶0.15∶2.5(wt,质量比),微波功率130W,反应时间200s下制备的树脂对去离子水和浓度为0.154mol/L的NaCl、CaCl_2和FeCl_3溶液的吸水倍率分别为1821、165、82和43g/g。  相似文献   

18.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)、瓜尔胶(GG)为原料,N,N-亚甲基双丙烯酰胺(NMBA)为交联剂,通过超声辐射合成AMPS/AA/GG三元共聚树脂,借助热重曲线(TG)对树脂的热降解特性进行分析。实验结果表明:在优化条件下,树脂的吸水率最大,而且树脂具有良好的耐热性能和保水性能;热分解动力学分析结果显示树脂热降解活化能为164.29 kJ/mol,lg A为13.84,反应级数n=1/6,树脂的热降解遵循44号随机成核和随后生长机理。  相似文献   

19.
徐品  刘咏  化全县  汤建伟 《化工新型材料》2012,40(1):126-127,142
在室温下,利用酸碱中和热引发聚合反应,以丙烯酸(AA)和丙烯酰铵(AM)为共聚单体,分别以过硫酸钾(KPS)为氧化剂、亚硫酸钠(CAS)为还原剂,N,N-亚甲基双丙烯酰胺(NMBA)为交联剂,采用水溶液聚合法制取聚丙烯酸-丙烯酰胺高吸水性树脂(PAMA)。通过正交设计实验探讨该吸水性树脂合成的主要影响因素及优选制备工艺条件。实验表明:在AM用量1.575g,KPS 0.079g,CAS 0.095g,NMBA 0.047g,中和度80%的条件下,制得的PAMA其吸水倍率可达622g/g,吸盐倍率85g/g。  相似文献   

20.
以棉籽蛋白、丙烯酸和丙烯酰胺为主要原料,N,N’-亚甲基双丙烯酰胺为交联剂,过硫酸钾-亚硫酸氢钠为引发剂,采用溶液聚合法制备了棉籽蛋白接枝共聚丙烯酸-丙烯酰胺高吸水性树脂[P(CP-g-AA/AM)],并对其较佳工艺条件以及综合吸水性能进行了考察。结果表明,制备P(CP-g-AA/AM)的适宜条件为:wCP∶wAA+AM=10%、w交联剂∶wAA+AM=0.1%、w引发剂∶wAA+AM=1.0%、wAA∶wAM=75∶25、AA中和度为80%、反应温度60℃、反应时间2h。在此条件下合成的P(CP-g-AA/AM)树脂在去离子水中的饱和吸水倍率为1130g/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号