首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
建筑的节能和可再生能源利用是实现碳达峰、碳中和目标的关键一步。天空辐射制冷作为无需额外能耗、无需制冷剂的制冷技术,对于实现建筑节能、降低碳排放具有重要意义。为此,本文研究了天空辐射制冷技术应用于我国既有建筑后的减碳作用预期,即降低建筑运行阶段碳排放的潜力。以统计年鉴为依据,获得目前我国建筑总存量面积及各省不同建筑类型存量面积。对9种典型建筑类型分别按节能标准建模,并在我国各省分别选取气象站的典型气象年数据,利用建筑能耗模拟工具EnergyPlus计算获得各省不同建筑类型在建筑运行阶段的碳排放基准值及应用天空辐射制冷技术后的减碳量、减碳率,其中居住建筑和工业建筑具有较高的平均减碳率。分析了应用后减碳率的空间分布,结果表明:按气候区划分的平均减碳率为严寒地区4.92%,寒冷地区8.11%,夏热冬冷地区10.71%,夏热冬暖地区10.92%,温和地区16.77%。综合全国年总减碳量可达2.30亿t CO2,占建筑运行碳排放的10.90%,占能源总碳排放的2.39%,对于我国实现双碳战略目标的预期贡献巨大。  相似文献   

2.
本研究利用电石渣替代部分水泥,制备新型固碳胶凝材料,研究了不同电石渣含量的胶凝材料对600 kg/m3等级泡沫混凝土的基础性能及固碳性能的影响。研究表明:电石渣的掺入导致泡沫混凝土气孔变大,28 d抗压强度先升高后降低,保温性能提高;当电石渣取代10%水泥,制备出的泡沫混凝土干密度为595 kg/m3,28 d抗压强度比未掺加电石渣的提高4.2%,达5.0 MPa;当电石渣取代50%水泥,制备出的泡沫混凝土导热系数比未掺加电石渣的降低17.1%,为1.131 W·m-1·K-1。电石渣掺加有利于改善泡沫混凝土收缩,当电石渣掺量增加,泡沫混凝土先呈现收缩减小后出现膨胀。碳化养护不仅能够固化封存CO2,还能提高泡沫混凝土的力学性能与保温性能。电石渣掺量越高,泡沫混凝土固碳能力越强,电石渣掺量为50%时,CO2的捕获量达到46.02 wt%。  相似文献   

3.
碳捕获与封存技术是一种具有前景的CO2减排策略。本工作采用巨正则蒙特卡洛模拟研究了温度为298 K、压强在0~5 kPa范围内三种混合超微孔材料SIFSIX-X-Cu(以SiF6 2-排列, Cu为金属中心, X=2, 3, O)中CO2/N2吸附与分离的行为。结果显示, 相比于SIFSIX-2-Cu, SIFSIX-3-Cu和SIFSIX-O-Cu中CO2在0.5 kPa就达到吸附饱和, 且在1 kPa下的吸附量分别达到了2.70与2.39 mmol·g -1。CO2/N2混合气体中CO2的吸附量几乎没有下降。SIFSIX-3-Cu和SIFSIX-O-Cu具有接近于CO2分子动力学直径的孔径, 对CO2亲和力较大, 吸附热分别达到了59和66 kJ·mol -1。密度泛函理论分析发现, 在两种结构中每个孔隙只吸附一个CO2分子, 且几乎处于孔道的中心。本工作为低压下吸附与分离CO2的混合超微孔材料的开发提供了理论指导。  相似文献   

4.
基于绿色低成本的单宁所具有的大量反应性羟基,其与醛类反应具有与苯酚或间苯二酚相似的机制。在传统的酚醛树脂基(苯酚-尿素-甲醛)炭气凝胶的基础上,通过添加单宁进行改性,成功制备出新型高效的CO2吸附用酚醛基炭气凝胶。通过扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)和氮气吸脱附测试对其表面化学和孔隙结构进行了系统表征,同时通过CO2吸脱附测试对其CO2吸附量、选择性吸附及吸附热等进行了研究。结果表明:以绿色可再生的生物质原料单宁对原料进行部分取代,不仅可以显著降低产品成本,还可以明显改善其CO2的吸附性能。当单宁的添加量(15 g)为苯酚用量的50wt%时,样品具有最大的比表面积(1 376.31 m2·g-1)和微孔体积(0.55 cm3·g-1),是一种极具潜力的气体吸附材料。其相应的CO2吸附量高达5.36 mmol·g-1,选择性吸附和吸附热则分别为16.84和34.49 kJ·mol-1<...  相似文献   

5.
用真空感应渗碳方法对Ti6Al4V钛合金进行高速渗碳,研究了渗碳层在HF溶液中的腐蚀行为。对腐蚀前后渗碳层的相结构和形貌的分析发现:对Ti6Al4V钛合金高速渗碳后,在表面生成一层TiC和CTi0.42V1.58复合化合物相的渗碳层。因为表面有渗碳层,Ti6Al4V钛合金在浓度为0.2%的HF中?泡其腐蚀速率从4.65×10-10 g·m-2·h-1降低到3.3×10-10 g·m-2·h-1。电化学腐蚀测试结果表明,其自腐蚀电位从未渗碳时的-0.94 V升高到-0.68 V,腐蚀电流密度从4.10 mA·cm-2降至1.65 mA·cm-2,极化电阻从6.36 Ω·cm2增大到15.8 Ω·cm2,Rt从0.2 Ω·cm2增大到5.7 Ω·cm2。渗碳层具有n型半导体特性,未渗碳样品具有p型半导体特性。Ti6Al4V钛合金渗碳后,在腐蚀过程中电子转移的阻力增大,使耐蚀性提高。F-对Ti6Al4V钛合金渗碳层的腐蚀机理,主要是析氢腐蚀。  相似文献   

6.
通过一种简便的方法制备氧空位缺陷的氢化TiO2包覆核壳结构C/Fe3O4@rGO(H-TiO2/C/Fe3O4@rGO)复合材料,作为锂离子电池(lithium-ion batteris, LIBs)高性能阳极材料。TiO2在Li+脱嵌过程中体积膨胀系数约为4%,可缓解Fe3O4在充放电过程中的体积膨胀,提高阳极材料结构的稳定性。同时,通过氢化处理改善TiO2较低的电导率(约1×10-12 S·m-1)。H-TiO2/C/Fe3O4@rGO在0.3 A·g-1的电流密度下循环200周次后比容量为867 mAh·g-1,在1 A·g-1的电流密度下循环700周次的比容量为505...  相似文献   

7.
优化设计太阳能蒸发器的结构并提高光热转换效率是改善其蒸发性能的有效途径。本工作基于原位自由基聚合反应,设计了一种多层结构的聚丙烯酰胺(PAM)复合水凝胶太阳能蒸发器并研究了其性能。该水凝胶由底部PAM/纳米纤维素(PAM/CNF)水运输层、中部PAM/碳纳米管/氮化钛(PAM/CNTs/TiN)光热转换层以及顶部“孤岛”状PAM/空心MXene微球(PAM/HSMX)构成的粗糙表面层组成。这种设计构建的PAM/CNF-PAM/CNTs/TiN-PAM/HSMX多层结构水凝胶太阳能蒸发器(ML-SVG)不仅能够提高光热转换效率,减少热量的损耗,而且促进了水分的运输,从而赋予ML-SVG优良的蒸发性能。ML-SVG在2kW·m-2太阳光照射下的蒸发速率达到2.2kg·m-2·h-1,同时具有优良的循环使用性能,高效的污水净化和盐水淡化性能。  相似文献   

8.
高熵合金的设计思想在诸多材料领域都有广泛的应用, 本研究从高熵结构对热电输运性质的影响出发, 着重讨论热电材料对高熵结构设计的一些要求。以CuInTe2为实例, 提出了热电材料的高熵结构应当尽量减小晶格畸变, 尽量选择在不影响费米面结构的格点位进行高熵掺杂。依据这些准则, 设计的高熵化合物Cu0.8Ag0.2Zn0.1Ga0.4Ge0.1In0.4Te2的室温热导率降到了2.1 W·m-1·K-1, 比基体材料降低70%, 最高ZT值达到1.02, 较基体提升90%。在二元化合物SnTe中进行了AgSbSe2固溶, 其室温热导率降到1.3 W·m-1·K-1, 比基体降低80%以上。本研究表明, 遵循一定准则设计的高熵结构对于提升热电材料性能具有重要的意义。  相似文献   

9.
刘强  丁杰  纪国敬  胡绢敏  顾浩  钟秦 《无机材料学报》2021,36(10):1053-1058
近年来, 随着化石资源的消耗和CO2的大量排放, 人类面临的能源危机和温室效应问题日益严峻, 而铁基催化剂催化CO2加氢直接合成烯烃是实现CO2减排及CO2转化与利用的最佳途径之一。本研究采用浸渍法制备了氧化锆(ZrO2)负载铁钴催化剂(Fe-Co/ZrO2)和ZrO2负载铁钴钾催化剂(Fe-Co-K/ZrO2)用于催化CO2加氢制低碳烯烃(C2=-C4=), 重点考察了K含量对催化反应活性的影响。活性测试结果表明, 在300 ℃和1.5 MPa下, 加入K使CO2转化率由40.8%提高到44.8%, 低碳烯烃选择性从0.23%增至68.5%, 并提高了反应性能的稳定性。表征结果显示, 加入K使Fe物种的外层电子密度增大, 提高了Fe对CO2的吸附强度, 促进了碳化铁的形成, 并有利于CO2在Fe物种上吸附后发生直接解离, 提升了CO2加氢制低碳烯烃性能。  相似文献   

10.
将粒度为F280的SiC颗粒振实后直接无压浸渗液态AlSi12Mg8铝合金,制备出高SiC含量的铝基复合材料,并对其结构和性能进行了研究。结果表明:采用该方法制备的SiC/A1复合材料内部组织结构均匀致密,无明显气孔等缺陷,界面产物主要为Mg2Si,MgO,MgAl2O4;平均密度为2.93 g·cm-3,抗弯强度在320 MPa以上,热膨胀系数为6.14×10-6~9.24×10-6 K-1,导热系数为173 W·m-1·K-1,均满足电子封装材料要求。  相似文献   

11.
吴晨光  李蓓 《复合材料学报》2022,39(5):2495-2503
采用非平衡分子动力学(NEMD)方法,以二元硝酸盐Solar salt(NaNO3和KNO3质量比为6∶4)为基体,石墨烯为填料,研究了石墨烯取向对石墨烯/硝酸盐复合材料界面热导的影响。研究发现,随着石墨烯平面与热流方向夹角的减小,体系热流密度升高、温差下降,界面热导从46.36 MW·m-2·K-1提升至80.03 MW·m-2·K-1。对复合材料中的原子振动态密度和微观结构进行表征,结果发现,随着石墨烯与热流夹角减小,界面处的热流从跨石墨烯平面运输转变为沿石墨烯平面的高效率运输,且加入石墨烯后硝酸盐会形成密度较大的致密层结构。同时,采用有效介质理论拟合了微观尺寸的石墨烯/硝酸盐复合材料热导率,结果表明,石墨烯平行于热流方向时复合材料热导率最高,且增加石墨烯体积分数及长度均有助于复合材料热导率的增强。  相似文献   

12.
太阳能界面水蒸发技术在解决目前人类所面临的能源和淡水资源短缺方面具有广阔的应用前景。水输运是太阳能水蒸发过程中十分重要的一环。理想状态下的水输运是输送适量的水来维持太阳能蒸发层高效、稳定的水蒸发。而蒸发层所拥有的多孔结构所产生的毛细管作用力决定了其水输运的能力。因此,蒸发层内部的孔隙结构非常重要。本文以聚偏氟乙烯(PVDF)为基体,借助碳纳米管(CNTs)的优异光吸收能力,通过羟乙基纤维素(HEC)掺杂并与戊二醛进行交联制备了可用于太阳能界面水蒸发的CNTs-HEC/PVDF多孔复合膜。CNTs-HEC/PVDF复合膜的多孔结构形成的微通道提高了水输运和蒸汽逸出能力,从而增强了太阳能界面水蒸发性能。在1 kW·m-2的太阳光照射下,其水蒸发速率达到1.81 kg·m-2·h-1,相应的光热转化效率为95%。相关实验结果还展现出该复合膜具有优异的循环使用性能、化学稳定性和高效的污水净化能力。  相似文献   

13.
针对TiO2表面活性位点不足、反应动力学缓慢、CO2还原产物中碳氢化合物的产率低以及选择性差等问题,研究通过Pd催化氧还原法在缺氧环境中构筑了具有表面氧空位的一维单晶TiO2纳米带阵列(Pd-Ov-TNB)。通过形貌结构、载流子行为及光催化性能分析,探究了表面氧空位和Pd的氢溢流效应对光生载流子分离传输及还原产物选择性的影响。结果表明,Pd-Ov-TNB的CO2还原活性强,产物中CH4、C2H6和C2H4的产率分别为40.8、32.09和3.09μmol·g-1·h-1,碳氢化合物的选择性高达84.52%,在C-C偶联方面展现出巨大的潜力。其一维单晶纳米带结构提高了材料的活性比表面积和结晶度,为CO2还原反应提供了更多的活性位点,并加速载流子的分离传输。同时,氧空位增强了光生电荷的表面积累,为CO2还原提...  相似文献   

14.
分别以TiCl4和ZrOCl2·8H2O作为钛源和锆源, 经过溶胶-凝胶和超临界CO2干燥过程, 将遮光剂粒子TiO2和ZrO2掺入到Al2O3-SiO2气凝胶, 并进一步以莫来石纤维毡为增强相制备出具有一定力学性能的耐高温气凝胶复合材料, 分别探究了两种遮光剂粒子对复合材料的微观结构、力学性能和热导率的影响。结果显示: 遮光剂粒子的引入可以有效阻止气凝胶在高温下的塌陷和团聚, 保持气凝胶高孔隙率的特性; 复合材料呈现典型的气凝胶填充纤维结构, 并且具有轻质(0.21~0.24 g·cm-1)和高强度(弯曲强度为0.98~1.26 MPa)的优异性能, 拓展了材料的实用性; 在 1050℃的高温下, 由于 TiO2 和 ZrO2 粒子对红外电磁波具有吸收和散射作用, 可以将复合材料的热导率由0.098 W·m-1·K-1分别降低至0.085 W·m-1·K-1和0.076 W·m-1·K-1, 从而有效提高材料的高温隔热性能。  相似文献   

15.
高分子材料的绝热特性极大地限制了其作为导热材料在工业中的应用。选用多层石墨烯作为导热填料,并分别与导热填料氧化铝(Al_2O_3)和碳化硅(SiC)复配,探究导热填料的复配对尼龙6(PA6)复合材料导热性能的影响。加入质量分数为3%石墨烯时,PA6复合材料的热导率为0.548W·m-1·K-1,相比PA6基体提高161%。通过调节石墨烯与Al_2O_3和SiC复配的比例以及复合填料量,PA6复合材料的热导率可控在0.653~4.307W·m-1·K-1之间,最高是PA6基体的20倍。为拓展石墨烯在导热材料方面的应用及PA6导热材料在工业上应用提供了有价值的实验依据。  相似文献   

16.
致密陶瓷透氧膜因在氧气制备和涉氧化工过程中的潜在重要应用而备受关注。本研究采用相转化流延/叠层/烧结工艺制备了三明治结构Gd0.1Ce0.9O2-δ-La0.6Sr0.4FeO3-δ(GDC-LSF)双相复合陶瓷透氧膜, 其中部为起氧分离作用、厚度80 μm的致密功能层, 两侧为厚度420 μm的直孔结构支撑层。采用浸渍法在支撑层内壁修饰Nd2NiO4+δ(NNO)纳米颗粒。在膜的一侧通入空气, 另一侧通入氦气作为载气, 测得900 ℃时氧渗透通量高达1.53 mL·cm-2·min-1。将氦气切换为CO2, 测得氧渗透通量为0.6 mL·cm-2·min-1, 氧渗透在长达90 h的时间内保持稳定。该透氧膜经历70余次热循环(800~900 ℃)后仍保持完好。本研究表明: 直孔三明治结构GDC-LSF透氧膜具有良好的氧渗透性能、化学稳定性和热机械性能, 有望用于氧气分离和富氧燃烧/CO2捕获。  相似文献   

17.
为提升碳钢在高温、含CO2环境盐水介质中的耐蚀性,采用钛酸四丁酯在丙二醇甲醚醋酸酯的增容条件下与漆酚交联形成漆酚钛涂料,并涂覆于碳钢基材表面制备高耐温涂层。通过热重分析明确了漆酚钛涂层的耐温性能;利用高温、高压且含CO2介质浸泡试验,通过形貌与傅里叶变换红外光谱分析评价了涂层在模拟盐水中对碳钢的防护性能;使用电化学阻抗谱(EIS)评价了浸泡前后涂层在腐蚀介质中的阻抗变化。结果表明:漆酚钛涂层的热分解温度高达275.19℃;在140℃与155℃的模拟盐水溶液(CO2分压2 MPa)中浸泡30 d后,涂层的低频阻抗值分别达到1011 Ω·cm2与1010 Ω·cm2数量级;涂层的价键特征未发生改变,表面形貌完整且与基材结合紧密,表现出优异的耐高温防护性能。  相似文献   

18.
通过水蒸气二氧化碳(H 2O(gas)-CO2)共活化的物理活化方法制备聚苯胺基活性碳被广泛应用于商业活性碳的规模化生产,相比于化学活化方法,该方法制备的活化产物无活化剂残留、清洗简单且工艺过程环保。以聚苯胺为原料,探究了H 2O(gas)的量和CO2分压对活化产物的影响。采用氮气吸/脱附、扫描电镜(SEM)、透射电镜(TEM)等表征手段系统研究了活性碳的孔径分布及孔道结构,采用电化学工作站研究了活性碳作为离子液体电容器电极材料的电化学性能。当H 2O(gas)和碳化产物的质量比为4∶1、CO2分压为0.6时,所制备活性碳的比表面积和孔体积可分别达到2357 m2·g-1和1.45 cm 3·g-1。该样品具有丰富的中孔和大孔结构,且中孔比表面积占总比表面积的比率约为40%。采用离子电解液时,该样品作为电容器的电极材料具有较高的容量,在0.1 A·g-1的电流密度下容量可达到203 F·g-1,并拥有优异的倍率性能以及良好的循环稳定性,在10000次循环(5 A·g-1)后具有91%的容量保持率。采用有机电解液时,其在1 A·g-1的电流密度下容量可达134 F·g-1,且在10 A·g-1的大电流密度下容量保持率达100%。该活性碳在离子电解液和有机电解液中均具有的优异电化学性能,可归因于其丰富的中孔和大孔结构极大地减少了离子迁移阻力,从而提升了其倍率性能和在离子电解液中的循环性能。  相似文献   

19.
以1,2-二(三乙氧基硅基)乙烷(BTESE)为前驱体、PdCl2为钯源, 制备Pd掺杂有机无机杂化SiO2(POS)溶胶, 涂膜后在水蒸气氛围中煅烧, 制备得到POS膜。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附和透射电子显微镜(TEM)对POS粉体的微观结构进行表征。考察了钯/硅摩尔比(n(Pd/Si)=0.1、0.5和1)对POS膜的气体分离性能与水热稳定性能的影响。结果表明: 随着Pd掺杂量的增加, POS膜的H2渗透率逐渐增大, H2/CO2的理想选择性逐渐下降。经100 kPa水蒸气处理180 h后, 采用n (Pd/Si)=1制备的POS膜的H2渗透率达到1.62× 10-7 mol·m-2·s-1·Pa-1, H2/CO2理想分离因子达到13.6, 表明该膜具有较好的H2渗透性能、H2/CO2分离性能和水热稳定性能。  相似文献   

20.
张艳平 《安装》2024,(1):31-33
<正>承建单位:山西五建集团有限公司开工日期:2020年5月13日竣工日期:2022年5月30日一、工程概况新建中共兴县县委党校项目位于山西省吕梁市兴县八路军120师驻地蔡家崖,工程设计融入黄河文化与红色文化,平面布局呈“中、共”二字,项目包括教学区综合楼及宿舍区,总建筑面积88,665.61m2,其中教学区综合楼建筑面积29,083.28m2,框架结构,宿舍区建筑面积59,582.33m2,框剪结构+钢结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号