首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
微波碳热还原法合成锂离子电池正极材料Li_2FeSiO_4/C   总被引:3,自引:0,他引:3  
以Li2CO3、FeOOH、纳米Si O2为原料,聚乙烯醇和超导碳为碳源,采用微波碳热合成法合成了Li2FeSi O4/C材料。通过XRD、SEM和恒流充放电测试,对样品结构、形貌和电化学性能进行了表征和分析。结果表明,微波合成法可以快速制备具有正交结构的Li2FeSi O4材料;在处理温度650℃、时间12min的条件下获得了高纯度、晶粒细小均匀的产物,并具有良好的电化学性能。以C/20倍率进行充放电测试,首次放电容量为127.5mAh/g,20次循环后容量仍有124mAh/g。  相似文献   

2.
采用机械球磨结合微波辐射工艺合成C包覆锂离子电池正极材料LiFePO4/C.通过X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试研究了不同C源和掺C量对样品物相结构、形貌和电化学性能的影响.实验结果表明,微波法可以快速合成LiFePO4/C正极材料;以乙炔黑作为C源,掺杂8%(质量分数)所合成的样品具有最好的电化学性能,在室温下以20mA/g进行充放电测试,其首次放电容量为148.44mAh/g,10次循环后仍有144.74mAh/g,容量保持率为97.51%.  相似文献   

3.
采用固相法合成了掺杂Zn2+的锂离子电池负极材料Li4-2xZn3xTi5-xO12(0≤3x≤0.2)。对材料进行了SEM、XRD、激光粒度分析、振实密度、循环伏安测试及恒电流充放电测试。Zn2+的掺杂未改变材料的晶体结构,但使材料的振实密度有了明显提高,达到了1.56g/cm3。实验结果表明,Zn2+的掺杂改善了Li4Ti5O12的电化学性能,降低了电极的极化,提高了Li4Ti5O12的循环稳定性;当各元素摩尔比为n(Li)∶n(Zn)∶n(Ti)=3.933∶0.100∶4.967时,材料的电化学性能较优,1C首次放电比容量可达到151mAh/g,经过60次循环后,放电容量保持在138mAh/g。  相似文献   

4.
通过固相反应法合成出Li3+xFe2-xMnxn(Po4)3(x-0~O.1)、Li3Fel.ω5Mn0.05(PO4)3和Li2.95Fe1.ωMnoN.05(PO4)3正极材料.采用行星式球磨方法,均匀混合正极材料和导电乙炔黑以提高活性材料的电子导电率和降低颗粒尺寸.Mn掺杂的Li3Fe2(PO4)3样品的恒电流充放电测试和伏安循环测试(2~4V)发现,所有样品中Fe3+/Fe2+氧化还原电对均有两个稳定的充放电平台(2.8、2.7V)、Li3+,Fe2-xMnxII(PO4)3和Li3Fe1.95Mn0.05(PO4)3中Mn3+/Mn2+电对的充放平台位于3.5V左右.不同价态Mn的掺杂均可明显提高正极材料的电化学性能,其中Mn掺杂样品的电化学性能最好,其中Li3.05Fel.95MnⅡ0.05(PO4)3/C的C/20和C/2恒流放电比容量分别可达11O和66mAh/g.  相似文献   

5.
以Li2CO3、MnO2、NiO、FeC2O4·2H2O为原料,用高温固相法合成了尖晶石结构的LiNi0.5Mn1.5O4/LiNi0.5Mn1.45Fe0.05O4锂离子电池正极材料;并对合成的样品进行XRD、SEM及电化学性能测试。结果表明:引入Fe3+可以提高材料的结构稳定性,并且改善了材料的导电性,一定程度上减缓材料的容量衰减,LiNi0.5Mn1.45Fe0.05O4表现出较好的电化学性能,0.2C倍率下经20次充放电循环,未掺杂样品与掺杂样品的放电比容量分别为115.4mAh/g和120.1mAh/g,容量保持率由92.1%提高到96.5%。  相似文献   

6.
通过高温固相法合成了掺杂Zr4+的正极材料Li1-xZrxFePO4(x=0、0.005、0.01、0.02、0.03、0.04)。采用X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电、交流阻抗(ACI)和正电子湮没寿命谱(PALS)等分析测试技术对掺杂材料的晶体结构、形貌、电化学性能和微观缺陷进行研究。结果表明,在整个掺杂范围内,所有样品都具有单一的橄榄石结构,且样品表面形貌和颗粒尺寸的变化较小;掺杂系列样品中,Li0.99Zr0.01FePO4具有最好的电化学性能,在0.1C充放电倍率下,首次放电比容量达到141.6mAh/g,高于未掺杂的LiFePO4的容量107.4mAh/g,经30次循环后Li0.99Zr0.01FePO4的容量保持率为75.8%。交流阻抗谱研究表明,掺杂Zr4+使锂离子脱嵌过程中电荷转移反应的阻抗明显减小;正电子湮没寿命谱研究表明掺杂Zr4+可以在样品晶格内部产生空位缺陷,使正电子湮没寿命增加,从而提高材料电导率。  相似文献   

7.
以Li2CO3和粒径为70nm的TiO2为原料,以碱式碳酸镁[(MgCO3)4·Mg(OH)2·6H2O]为镁源,采用高温固相法合成了Li4Mgx Ti5O12(设定镁锂摩尔比R=x/4=0.01、0.02、0.03、0.04、0.05来确定掺杂镁的量)。采用XRD、SEM、CV、电化学阻抗谱、充放电曲线等对所合成的材料进行了物理和电化学性能表征。测试结果表明:随着Mg2+掺杂量的增加,钛酸锂的比容量出现先增大后减小的趋势;当R=0.03时具有最高的电化学性能,其首次放电比容量高达189.9mAh/g,高于Li4Ti5O12的理论容量175mAh/g。由于适量的Mg2+掺杂改善了材料的内部结构,提高了锂离子的嵌入量从而提高了比容量。  相似文献   

8.
采用共沉淀法制备了球形前驱体,并以此前驱体应用微波加热制备了高密度Li0.95Na0.05FePO4正极材料。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、循环伏安(CV)、恒电流充放电和振实密度测定等方法对材料的结构、表观形貌、电化学性能及振实密度进行了测试。结果表明:样品具有比较规则的球形或类球形的形貌及单一的橄榄石型晶体结构,以Na掺杂的Li0.95Na0.05FePO4具有优良的性能,振实密度达1.63g/cm3,在室温下分别以0.2C、1C和2C的电流密度充放电,首次放电比容量分别为164.2mAh/g、151.5mAh/g和130.5mAh/g。  相似文献   

9.
共沉淀-微波法合成LiFePO4/C正极材料   总被引:2,自引:0,他引:2  
以有机表面活性剂聚乙二醇(PEG)为碳源,采用共沉淀-微波法合成了锂离子电池正极材料LiFePO4/C,探讨了微波烧结时间对样品结构和性能的影响,并用XRD、TEM、激光粒度分析和恒电流充放电测试对LiFePO4/C样品的结构、形貌和电化学性能进行了表征.结果表明:微波烧结9 min的样品为单一的橄榄石晶体结构和较好的电化学性能,在室温下,以0.1C、0.2C和1C进行充放电,首次放电比容量分别达到154.3mAh/g、139.7mAh/g和123.9mAh/g,循环20次后仍保持在152.3mAh/g、134.3mAh/g和118.5mAh/g.  相似文献   

10.
李军  周燕  唐盛贺  陶熏 《功能材料》2013,44(13):1856-1858
为提高Li4Ti5O12的导电性和倍率性能,应用二步固相法制备了Nb掺杂的Li4Ti4.95Nb0.05O12负极材料,X射线衍射、扫描电镜、激光粒度分布仪、充放电测试、循环伏安和交流阻抗等测试结果表明,合成的样品具有单一的尖晶石结构和平稳的充放电平台,粒径分布均匀,Nb掺杂改性的Li4Ti5O12具有优良的电化学性能,0.1、0.5、1和10C首次放电比容量分别为174.1、159.7、147和123.3mAh/g。10C下,循环20次后容量保持为118.1mAh/g。  相似文献   

11.
采用高温固相法合成了Al2O3修饰的Li1 xV3O8自正极材料,用X射线衍射、恒电流充放电实验、循环伏安法等对材料的结构和电化学性能进行了表征.结果表明Al2O3修饰使得Li1 xV3O8材料的层间距离增大,材料的导电性能和电化学反应的可逆性提高.当Al2O3含量为6mol%时,Li1 xV3O8表现出良好的循环性能,首次放电容量达到219mAh/g,10次循环后容量保持率为92.3%.  相似文献   

12.
为了研究锂离子电池的正极材料LiCoO2的新型制备方法,考查了反应原料配比、微波输出功率、微波合成温度和微波加热时间对LiCoO2结构和性能的影响.以LiOH·H2O和Co2O3为反应原料的最佳合成条件:Li/Co摩尔比为1.05∶1,微波输出功率为360W,反应时间为14min,合成温度为800℃.所合成LiCoO2样品均采用XRD和SEM进行表征,结果表明,采用微波合成的LiCoO2样品为单一相层状结构且晶体结构发育良好;样品的充放电循环性能良好,首次循环放电容量为130mAh/g.  相似文献   

13.
采用溶胶-凝胶法合成锂离子电池正极材料Li1+xV3O8,并用X射线衍射、扫描电镜观察、充放电循环测试、循环伏安法扫描等,研究了Li1+xV3O8的物相结构、表面形貌以及电化学性能等,并探索了合成工艺条件对材料的电化学性能的影响。结果表明,温度为400℃时合成的Li1+xV3O8晶粒较为细小均匀,粒径大小相对较为均一,颗粒大小在0.5—1.0μm左右,这些小晶粒将有效地增加其比表面积,同时电化学性能较好,10mA/g的电流密度下首次放电容量为230 mAh/g,20次循环之后容量仍能达到180 mAh/g,循环性能较好。随着合成温度增高,首次放电容量减小,循环效率降低。  相似文献   

14.
锂离子电池正极材料Li1+xV3O8合成技术研究进展   总被引:3,自引:0,他引:3  
层状的Li1 xV3O8电池正极材料具有比容量高、循环寿命长、价格便宜等优点,有望成为新一代锂离子二次电池的正极材料。综述了层状的Lil xV3O8正极材料的结构、性质、制备技术、掺杂技术、电化学性能以及影响电极材料性能的各因素。其中重点总结了Li1 xV3O8正极材料的制备技术,包括高温固相合成技术、低温合成技术和掺杂技术。指出溶胶-凝胶法和经脱水处理的电极材料在综合性能上取得了一定突破,有望实现产业化生产。  相似文献   

15.
以CH3COOLi·2H2O、V2O5、Mn(CH3COO)2·4H2O、(NH4)2HPO4和蔗糖为原料,采用溶胶–凝胶法合成了掺锰磷酸钒锂/碳(Li3V2-2x/3Mnx(PO4)3/C)复合正极材料,用XRD、XPS、SEM、电化学性能对样品进行了表征.测试结果表明,少量锰的掺杂并未改变Li3V2(PO4)3/C的单斜结构,Li3V1.94Mn0.09(PO4)3中的Mn和V分别以+2和+3价存在,其颗粒类似球形,直径比较均匀且小于200 nm,并表现出良好的电化学性能.在0.1C倍率和3.0~4.8 V电压内,该样品的首次充、放电容量分别为182.1和168.8 mAh/g,放电效率高达92.69%,而且100次循环后,其放电比容量仍是首次放电容量的77.4%.  相似文献   

16.
采用高温固相合成法制备富锂锰基正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54-x)Zn_xO_2(x=0,0.03,0.06,0.10),Zn~(2+)掺杂对Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的表面特性和电化学性能都有影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱分析、充放电测试、倍率特性测试、循环性能测试,分析了该合成材料的晶体结构、形貌特征、微观结构和电化学性能。富锂锰基正极材料为a-NaFeO_2层状结构,R-3m空间群,结晶度高,结构稳定性好,其中Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.48)Zn_(0.06)O_2的电化学性能较好。掺杂Zn~(2+)可以提高富锂锰基正极材料的充放电比容量、倍率性能、循环性能等电化学性能。  相似文献   

17.
采用固相法合成锂离子正极材料尖晶石相Li1.02CoxCryMn2-x-yO4,研究元素Co、Cr不同掺杂量对产物的结构、晶胞常数、电化学性能和电池内阻的影响.分析表明,掺杂少量的Co、Cr的LiMn2O4依然保持着尖晶石结构;晶胞常数随掺杂量的增加而减小,从而使尖晶石的比表面积增大,有利于提高电池的初始容量;并有效地抑制了充放电过程中的Jahn-Teller效应和Mn^3+的歧化反应.掺杂Co、Cr后Li1.02MnO4初始容量有所下降,且随掺杂量增加而减小,但能明显改善材料的循环性能.  相似文献   

18.
采用高压水热法制备锂离子电池正极材料Li 2MnSiO 4,研究压强、反应温度和前驱体浓度对合成Li 2MnSiO 4的影响,并进一步研究碳包覆前后Li 2MnSiO 4的电化学性能。通过X射线衍射、扫描电镜、透射电镜、充放电测试和交流阻抗等方法对样品的结构、形貌和电化学性能进行表征分析。结果表明:采用水热法在高压高温条件下可以合成高纯度的Li 2MnSiO 4材料,提高前驱体浓度有助于形成粒径较小的Li 2MnSiO 4纳米颗粒。电化学性能测试显示碳包覆后的 Li 2MnSiO 4/C比Li 2MnSiO 4具有更高的比容量,在0.1C (电流密度为33.3mA·g -1 )下首次放电比容量可达178.6mAh·g -1 ,循环50次后放电比容量为97.1mAh·g -1 ,容量保持率为54.4%。同时,Li 2MnSiO 4/C还具有比Li 2MnSiO 4更小的电荷转移阻抗和更高的锂离子扩散系数。  相似文献   

19.
改善尖晶石锰酸锂的大倍率性能是目前锂离子电池的重点研究方向之一。本研究用高温固相法合成掺K+的尖晶石锰酸锂, 研究K+提高锰酸锂倍率性能的微观机制。结果表明, 尽管随着电流密度增大, 电极的放电比容量下降, 但掺K+提高材料的大倍率性能效果显著, 如最佳掺K+量(物质的量分数)1.0%时, 在10C (1C=150 mA·g-1)下比容量提高了一倍, 远高于0.5C下的1.9%。原因在于掺K+后, 首先, 锰酸锂的晶胞体积扩大, Li-O键变长, Li、Mn阳离子混排程度降低, 载流子(Mn3+)量增多; 其次, 电极极化和电荷迁移阻抗降低, 提高了材料的充放电可逆性、导电性及锂离子扩散能力; 再者, [Mn2]O4骨架更稳定, 减小了电化学过程中内应力变化, 抑制了晶体结构变化和颗粒破碎; 最后, 钾离子掺杂使制备过程中材料团聚, 从而减小电解液与电极的接触面积, 减轻电解液的侵蚀, 抑制锰的溶解。  相似文献   

20.
锂离子二次电池正极材料氧化锰锂的研究进展   总被引:20,自引:1,他引:19  
综述了最近几年对于锂离子二次电池正极材料氧化锰锂的研究。研究的氧化锰锂材料主要有尖晶石结构的LiMN2O4、Li4Mn5O9和Li4Mn5O12以及层状结构的LiMnO2。对于LiMN2O4,通过引入适当的杂原子和采用新的溶胶-凝胶法制备复相 可以有效地克服Jahn-Teller效应所造成的容量衰减现象。Li4Mn5O9display structure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号