首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
本文研究了爆轰处理对不同组织和强度水平的20CrMo 钢氢脆敏感性的影响。结果发现爆轰处理加高温时效可显著降低钢的氢脆敏感性。对屈服强度分别为830MPa 和620MPa 的均相珠光体组织、爆轰处理对其氢脆敏感性没有或略有影响。爆轰处理显著增加了屈服强度为680MPa,组织为铁素体加珠光体材料的氢脆敏感性系数,同时显著降低它对不可逆氢脆的敏感性系数。  相似文献   

2.
In spite of toxicity, hydrogen embrittlement susceptibility, and environmental issues, cadmium electroplating is usually applied on high strength AISI 4340 aeronautical steel due to its efficient protection against electrochemical corrosion. Ion vapor deposition (IVD) process with pure aluminum also offers good protection against corrosion with the advantages of decreasing hydrogen embrittlement susceptibility and improving the fatigue strength of metallic components. In this research, the effects of aluminum electroplating and IVD aluminum coating on the rotating bending fatigue strength of AISI 4340 steel were evaluated in comparison with cadmium electroplated specimens. Experimental fatigue results showed that both aluminum electroplating and IVD aluminum coatings are possible alternatives to cadmium electroplating.  相似文献   

3.
A three-dimensional atom probe (3DAP) technique has been used to characterize the hydrogen distribution on carbides for a high strength AISI 4140 steel. Direct evidence of H atoms trapped at the carbide/ferrite interfaces has been revealed by 3DAP mapping. Hydrogen is mainly trapped on carbide/ferrite interfaces along the grain boundaries. Slow strain rate tensile (SSRT) testing shows that the AISI 4140 steel is highly sensitive to hydrogen embrittlement. The corresponding fractographic morphologies of hydrogen charged specimen exhibit brittle fracture feature. Combined with these results, it is proposed that the hydrogen trapping sites present in the grain boundaries are responsible for the hydrogen-induced intergranular fracture of AISI 4140. The direct observation of hydrogen distribution contributes to a better understanding of the mechanism of hydrogen embrittlement.  相似文献   

4.
Hydrogen embrittlement of high strength steel is believed to be one of the main reasons for the cracking of prestressed concrete structures. In this study, hydrogen was generated on the steel surface by applying different fixed cathodic potentials. The steel was immersed in simulated carbonated concrete solutions with and without 0.1 M NaCl. Simultaneously, the steel was subjected to tensile loading at slow strain rate until fracture. Fractographic analysis and the measurement of the concentration of absorbed hydrogen in the iron lattice were performed. Results showed that the hydrogen atom only penetrated into the iron lattice when the steel was loaded above its yield stress. This phenomenon produced quasi-cleavage like fracture, and the strain at fracture was considerably reduced. The presence of chloride ion together with the hydrogen embrittlement did not provoke a remarkable synergic effect in the mechanical properties of high-strength steel.  相似文献   

5.
We investigated the effects of precipitation phases on the hydrogen embrittlement (HE) sensitivity of Inconel 718 by means of tensile tests. Hydrogen was charged into the test specimens via a cathodic charging process prior to the tensile tests. Various heat treatments were applied to conventionally aged specimens to fabricate specimens with different precipitation conditions for the γ″ phase and the δ phase. For each precipitation condition, we fabricated two specimens, one of which was charged with hydrogen before the tensile test. All specimens were tensioned under identical tensile conditions. The percent loss of the reduction of area (RA) caused by pre-charged hydrogen was used to assess HE sensitivity. Both the δ phase and the γ″ phase were found to play significant roles in altering HE sensitivity of Inconel 718. When these phases were totally dissolved, the HE sensitivity of the alloy was very low. The percent loss of RA decreased along with a decrease in the fractional volume of γ″. The δ-free aged alloy had greatly enhanced HE resistance, the same level as that of conventionally annealed alloy, and its strength was equal to that of the conventionally aged alloy. Fracture origins noted on the specimens were located on the surface layers and displayed brittle cleavage when pre-charged hydrogen was utilized. Local transgranular cleavages initiated from the δ/matrix were also observed in conventionally aged specimens, where there was a presence of pre-charged hydrogen. Therefore, the δ phase was considered to promote HE by initializing micro-cracks from δ/matrix interfaces. Since the d-free aged alloy has both good strength and good ductility, we propose that it is advantageous for fabricating some hydrogen-containing parts.  相似文献   

6.
It is well known that earthquakes can damage structures and machinery. After an earthquake, those components, which have been obviously damaged are scrapped and replaced, and most of the components which have not been obviously damaged will continue to be used even after earthquakes. However, as will be shown, the earthquake may have severely impaired the fatigue strength of such components by introducing unfavourable residual stresses and short cracks at stress raisers. In addition, if such components should contain hydrogen, an increasingly possible scenario for the hydrogen economy in the future, then it is shown that the loss of fatigue strength can be even greater. This paper explores the extent of fatigue degradation due to overloads and to absorbed hydrogen. It was shown that generation of small crack and tensile residual stress imposed by overloads caused substantial decrease of residual fatigue strength compared with that in the initial state. It was also shown that hydrogen enhanced more reduction. Hydrogen enhanced reduction in two ways. The crack generated by overloads grew deeper in hydrogen charged material. In addition to this, the reduction of ΔKth also occurred in hydrogen charged material. These two factors worked together to reduce the residual fatigue strength after multiple overloads.  相似文献   

7.
为了研究渗氮处理对钢的氢脆敏感性的影响,对气体渗氮处理的普通碳素钢进行了拉伸试验,对其断口进行了扫描电镜观察和显微组织分析。结果表明:渗氮层发生了氢脆延迟断裂,未渗氮部位发生了韧性断裂;渗氮处理增加了钢的氢脆敏感性。  相似文献   

8.
Hydrogen effects on mechanical strength and crack growth were studied at high temperatures. The study was motivated by the fact that the environmentally assisted cracking (EAC) of pressure vessel steel SA508 Cl.3 in 288 °C water was suspected to be related to hydrogen embrittlement. Fatigue crack growth rate and tensile tests were performed with hydrogen pre-charged specimens at high temperatures. At 288 °C the fatigue crack growth rate of the hydrogen pre-charged specimen was faster than that of as-received; the fatigue fracture surface of hydrogen pre-charged specimen correspondingly showed EAC like feature. Meanwhile, ductile striation was evident for the case of as-received in both air and argon gas environments. In the dynamic strain aging (DSA) loading condition at 288 °C during tensile tests, the pre-charged hydrogen induced a marked softening (decrease in ultimate tensile strength; UTS) as well as a little ductility loss; this was accompanied by the macrocracks grown from microvoids/microcracks promoted by DSA and hydrogen. These experiments showed that hydrogen embrittlement is an effective mechanism of EAC not only at low temperature but also at the high temperature.  相似文献   

9.
The critical hydrogen concentration for hydrogen embrittlement in iron aluminide, Fe3Al has been estimated (0.42 wppm). The estimated critical hydrogen content has been correlated to structural aspects of the decohesion mechanism of hydrogen embrittlement.  相似文献   

10.
高心心  郭建章  张海兵 《材料导报》2017,31(6):93-97, 104
利用氢渗透试验、慢应变速率拉伸试验(SSRT)研究了1 000MPa级高强钢(HSS)焊接件在海水中的氢渗透行为及其应力腐蚀敏感性,结合SEM观察了试样的断口特征,并利用电化学试验和显微组织观察分析了焊接件不同区域的氢脆特征。结果表明:相对于焊缝区(WM)和母材区(BM),热影响区(HAZ)的自腐蚀电位最负、析氢电位最正,更容易发生腐蚀和析氢行为。热影响区的氢扩散系数最大,具有较强的吸氢倾向。动态电化学充氢对高强钢焊接件的影响主要体现在对塑性的损减方面;随着极化电位的负移,高强钢焊接件的强度没有明显变化,但断面收缩率、断后延伸率均减小,断裂方式逐渐由韧性断裂变为解理断裂;当极化电位约为-930mV(vs SCE)时,高强钢焊接件的氢脆系数达25%;在不同充氢极化电位下,焊接件试样的断裂位置多在热影响区。  相似文献   

11.
Hydrogen‐induced degradation of X80 pipeline steel was investigated through a high strain rate tensile test (2 × 10?4/s) with interposed unloading, reloading, aging at 30°C, or annealing at 200°C with or without hydrogen charging. The results indicated that plasticity degradation does not occur in the hydrogen‐precharged specimens; however, hydrogen embrittlement occurs in the reloading stage when the specimens are charged with hydrogen in the unloading stage after applying a prestrain. Interposed aging at 30°C or annealing at 200°C can also increase the degradation. It indicates that the hydrogen traps caused by the strain along with hydrogen charging are the major source of dislocations. The formation of a hydrogen atmosphere around mobile dislocations, which is related to the rates of hydrogen diffusion and dislocation movement, plays an important role in the degradation process. Both pinning and depinning of dislocations affect plasticity degradation.  相似文献   

12.
This paper presents a critical review of current understanding of the effect of hydrogen on fracture and fatigue of metals and alloys. First, microstructures found immediately beneath hydrogen-induced fracture surfaces in various materials are presented. Then, recent progress toward the fundamentals of hydrogen-induced fracture is reported. Lastly, a recent attempt to model hydrogen embrittlement by linking the macroscale (e.g. applied load and hydrogen content) and the operating microscopic degradation mechanism at the local microstructural defect level is reviewed.  相似文献   

13.
氢分离金属膜是目前备受关注的一种用于氢气提纯的功能材料.为了获得综合性能优异且价格低廉的氢分离金属膜,本文借鉴"多相构成、功能分担"的设计理念,通过非自耗电弧熔炼炉制备合金,采用XRD、扫描电子显微镜等手段研究合金相组成及微观组织,采用课题组自主设计的仪器设备在不同温度和压力下进行氢溶解和氢渗透实验,开发了具有双相结构的新型Cu-V-Cr氢分离合金.结果发现:该合金微观组织中的bcc-(V)固溶体相起渗氢作用,是氢的主要扩散通道;而组织中的fcc-(Cu)固溶体相起提高塑性作用.合金化元素Cr主要固溶在bcc-(V)中,显著降低合金的氢溶解能力,大幅度提高抗氢脆性能,但同时也降低合金的氢扩散系数和渗氢性能.实验表明,具有双相结构的Cu-V-Cr氢分离合金有望达到氢溶解、扩散和渗透性能的良好匹配,从而同时实现优异的氢渗透性能与抗氢脆性能.  相似文献   

14.
Abstract

The influences of thermal aging and environment on Paris-Erdogan regime fatigue crack growth rates and mechanisms in a high strength Cr–Ni steel (300M) have been investigated. Crack growth rates were measured in inert (vacuum) and aggressive (hydrogen) environments, for quenched and tempered material before and after thermal aging at 500°C. Aging induced an acceleration of crack growth in vacuum at low values of ?K, but a retardation at high values of ?K. The crack path was transgranular throughout, and followed carbide/matrix interfaces. These effects were associated with the embrittlement of carbide/matrix interfaces by phosphorus segregation, which facilitated transgranular crack growth at low ?K, but produced crack tip shielding by voids surrounding the crack at high ?K. Hydrogen acted synergistically with phosphorus to embrittle carbide/matrix interfaces, but it also localised slip deformation at crack tips, reducing void formation in surrounding material and associated crack tip shielding. This produced an enhancement of crack growth rates at all values of ?K significantly above the threshold regime. The role of carbide/matrix interface embrittlement constitutes a third mechanism of hydrogen embrittlement and temper embrittlement interaction in fatigue crack growth, additional to those of carbide precipitation and grain boundary embrittlement previously reported.

MST/1142  相似文献   

15.
It is shown that aluminum, Al-Mg-Mn-Fe (Alustar), Al-Mg-Mn-Fe-Si-Cr (PA13), and Al-Zn-Mg-Mn-Fe-Si-Cr (Pa47) alloys are sensitive to hydrogen embrittlement in the course of the tests carried out at low strain rates in a 0.01 N NaOH solution. The stress-strain curves, time to failure, and the character of fracture surfaces of specimens tested in air and under the conditions of cathodic polarization are compared. The parameters of hydrogen transport and its entrapping by hydrogen traps are studied on the basis of the data of electrochemical measurements of hydrogen permeation and vacuum extraction. The morphology of inclusions is estimated by the method of numerical metallography and their chemical composition by the method of EDS analysis. Despite distinctions in the chemical and phase compositions of alloys, we observe the dependence of the sensitivity to hydrogen embrittlement on the parameters of hydrogen transport and its entrapping by irreversible traps and some other microstructural characteristics. Under the conditions of electrolytic hydrogenation, the PA13 alloy reveals hydrogen-enhanced plasticity.Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 40, No. 3, pp. 88–94, May–June, 2004.  相似文献   

16.
This paper shows that laser beam irradiation improves the resistance to hydrogen embrittlement (HE) in an ultra-high-strength maraging steel. Localized laser irradiation of a peak-aged steel plate resulted in the formation of a soft surface layer called the laser-annealed zone (LAZ). A composite region (CR) was formed when both the top and bottom surfaces of a peak-aged specimen were laser-annealed (LA) to leave an interior layer of untransformed base metal (BM) sandwiched between the two LAZs. Slow strain rate tensile tests showed that LA specimens had lower strength and ductility than the peak-aged specimens when tested in air, but in a H2 S solution, the soft LAZs showed less susceptibility to HE than the BM. The fatigue crack growth rates (FCGRs) in the CR were lower than those in the BM regardless of testing environment and stress ratio ( R ). The retarded crack growth in the CR was attributed to the combination of residual compressive stresses and the soft microstructures in the LAZs. The tensile fracture appearance of LA specimens tested in a H2 S solution exhibited intergranular fracture in the BM. Fractographs of the fatigue specimens tested in gaseous hydrogen revealed transgranular fracture in the LAZs and mainly quasi-cleavage fracture in the BM.  相似文献   

17.
飞机表面水基清洗剂对金属材料腐蚀及氢脆性能影响研究   总被引:7,自引:0,他引:7  
研究了AHC-1及AHC-5两种飞机表面水基清洗剂对飞机表面典型金属材料的腐蚀性能及高强度钢氢脆性能的影响,探讨了应用缓蚀剂控制高强度钢氢脆的有效性以及用电化学极化法预测高强度钢在清洗剂中的氢脆倾向性.  相似文献   

18.
The finite element method was used to solve the coupled elastic–plastic boundary value problem and transient hydrogen diffusion initial boundary value problem. Solutions were obtained at room temperature and under plane strain deformation in the neighborhood of a blunting crack tip under small scale yielding conditions and in the neighborhood of a rounded notch in a 4-point bend specimen. A discussion of the finite element results in conjunction with different mechanisms of hydrogen embrittlement is presented. If a critical amount of hydrogen is required for hydrogen induced crack initiation, the present results predict locations of crack initiation sites at steel bend specimens which are in agreement with experimental observations on the occurrence of the first microcracking event.  相似文献   

19.
锌-镍合金电镀中氢的共沉积   总被引:5,自引:1,他引:4  
用电化学渗透测试方法研究了电镀锌-镍合金时渗氢量的变化规律,能够监控和评价镀层的氢脆性能,初步筛选出两种呆用于高强度钢抗氢脆电镀用槽液组成。在氯化物-硫酸盐槽液体系和含有添加剂B的氯化物糟液中,常温下可获得耐氢脆性能良好的Zn-Ni镀层。此外,缺口拉伸试验结果与电化学渗透测试结果相吻合。  相似文献   

20.
The present paper shows several important phenomena obtained by investigations of the effect of hydrogen on fatigue crack growth behaviour, including the measurement of the hydrogen content in various materials such as low-carbon, Cr-Mo and stainless steels. Particularly important phenomena are the localization of fatigue slip bands, strain-induced martensite in Types 304, 316 and even 316L, and also strong frequency effects on fatigue crack growth rates. For example, with a decrease in frequency of fatigue loading down to the level of 0.2 Hz, the fatigue crack growth rate of a Cr-Mo steel is accelerated by 10-30 times. The same phenomenon also occurs even in austenitic stainless steels at the frequency of the level of 0.001 Hz. Striation morphology is also influenced by hydrogen. It has been revealed by re-analysing the results of the authors’ separately published reports that this basic hydrogen embrittlement mechanism is essentially the same throughout all the materials, i.e. low-carbon, Cr-Mo and stainless steels. Thus, the coupled effects of hydrogen content, hydrogen diffusion coefficient (for BCC or FCC), load frequency, localization of fatigue slip bands and strain-induced martensite must be always considered in fatigue test and analysis of hydrogen embrittlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号