首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
介绍了环形狭缝波导天线等离子体源的原理和结构。采用微波单探针测量了无等离子体情况下环形波导狭缝天线内的电场分布,利用Langmuir双探针测量了该源的氩等离子体的特性,结果表明在微波功率为200~600W,运行气压为40~600Pa范围内,电子温度可达0.5~3eV,离子密度最高达6×1010cm-3在气压为100Pa,等离子体的直径为16cm范围内,其不均匀性不超过25%。  相似文献   

2.
采用微波三探针研究了环形波导等离子体源阻抗特性随运行参数的变化。分析了微波等离子体源的阻抗特性。该方法有助于微波等离子体特性的研究和实现快速阻抗调配。  相似文献   

3.
研制了一种用石英管制作的小型腔式微波离子源,该腔套在石英管的一端,封装两电极引出系统。该了源利用腔激发起的表面波在石英管内产生等离子体柱。在微波频率为2.45GHz,输入功率为93.W时,氮的引出离子流密度可高达91.7mA/cm2^2。,这种表面波放电等离子体源具有体积小,结构简单,在宽的压强范围内能产生再生性好,工作十分稳定的等离子体柱等特点。  相似文献   

4.
提出了环形波导场分布的计算模型 ,计算了环形波导内的微波场分布。结果表明即使在环形腔直径大于微波波长时 ,微波能量也能传到真空室中心附近 ,这为实现大面积均匀等离子体提供了理论依据  相似文献   

5.
报道了用氟利昂CHF3和氩气Ar作工作气体的反应离子刻蚀融石英的技术,研究了气体流速、腔压和射频等离子体功率对刻蚀速度的影响,并分析了刻蚀工艺对样品表面的污染,同时也考察了刻蚀工艺的均匀性和重复性。为了优化刻蚀工艺,采用Rs1/Discover软件工具设计优化实验。实验中射频等离子体功率在120~160W范围,氩气和氟利昂流速分别在15~35scm和20~50sccm范围,腔压在100~140mTor范围,相应的刻蚀速度为15~25nm/min。  相似文献   

6.
等离子体源特性及其应用   总被引:1,自引:0,他引:1  
李国卿  李剑峰 《真空》1998,(3):39-42
本文介绍了等离子体源的构造和性能,在较高真空条件下实现离子强化和镀膜一体化技术。氮离子流强达到8mA/cm2、氮化速度达到80μm/hr,在材料表面形成良好的力学梯度,提高膜基结合力和服役寿命。  相似文献   

7.
反应室几何结构对电场强度和电子密度分布的影响   总被引:3,自引:0,他引:3  
建立了电感耦合等离子体源的电磁场模型、电离模型和双极扩散模型,并进行模拟计算。计算结果表明,在天线结构和反应室内径不变的情况下,随着反应室高度的下降,电场强度逐渐升高,电子密度也升高。反应室高度从12cm降到5cm时,峰值电子密度增加60%。  相似文献   

8.
量 典型的仪器/实物 11无线电测量 11.1射频功率 11.1.1同轴绝对功率功率计,功率源 11.1.2波导绝对功率功率计,功率源 11.1.3同轴校准因子和有效效率 热敏电阻座,镇流电阻座和功率传感器 11.1.4波导校准因子和有效效率 热敏电阻座,镇流电阻座和功率传感器  相似文献   

9.
本文介绍了一种具有双侧波导同轴线耦合结构的新型微波等离子体源。通过电磁场模拟计算和等离子体发射光谱测量对同轴线耦合反应腔内部结构进行了优化,研究了线形等离子体源腔体结构对等离子体均匀性和长度的影响,并且在杆状样品表面进行了金刚石薄膜的沉积实验。实验结果表明:双侧波导同轴线耦合式新型线形等离子体源可以在引导天线表面产生圆柱状的线形等离子体,其等离子体的均匀性和长度受腔体内部结构的影响,在引导天线外径为4 mm,单侧模式匹配棒伸入量为10 mm的腔体结构下,等离子体的均匀性大于90%。通过对杆状样品表面不同位置处金刚石膜质量和等离子体沉积环境的测量,进一步验证了等离子体的均匀性。此外,线形等离子体的长度受引导天线长度和工作气压影响,这主要与反应腔内电磁场分布以及微波传输衰减有关。  相似文献   

10.
基于高Q值环形波导微谐振腔和微加工工艺的微光机电器件及系统是当前微纳制造科学和量子光学技术领域的研究热点。主要分析了环形波导微谐振腔的物理作用及应用价值,系统综述了环形波导微谐振腔Q值的测量方法,重点讨论了硅基环形波导微谐振腔Q值的影响因素,从材料、结构设计、加工工艺方面分析了提高环形波导微谐振腔Q值的技术途径,指出了当前高Q值环形波导微谐振腔研究存在的技术瓶颈问题,并展望了未来的发展趋势。  相似文献   

11.
微波电子回旋共振等离子体是淀积薄膜、微细加工和材料表面改性的一种重要手段。由于这种等离子体电离水平高,化学活性好,可以用来实现基片上薄膜的室温化学气相淀积和反应离子刻蚀,因此对于微电子学、光电子学和薄膜传感器件的发展,这种等离子体会具有重要的意义。此外,采用微波电子回旋共振等离子体原理,没有灯丝的离子源可以提高离子源的使用寿命,可以增加离子束的束流密度。可以确信,微波电子回旋共振等离子体的发展,将把离子源技术提高到一个新的水平。显然,这必将对材料表面改性工艺,包括离子注入掺杂等工艺的发展发挥作用。自从1985年以来,为了得到大容积等离子体而发展了微波电子回旋共振多磁极等离子体,这些技术在薄膜技术、微细加工以及材料表面改性中的应用前景是乐观的。我们将在本文中,介绍微波电子回旋共振等离子体的原理及其应用。  相似文献   

12.
A cylindrical high density (1012 cm−3) large volume (32 cm in diameter and 50 cm in length) homogeneous argon plasma has been produced by a microwave with a frequency of 2.45 GHz and a power of 900 W without a magnetic field. The plasma source is based on a ring shaped rectangular waveguide with eight equally spaced slots in its inside wall. Several optical emission patterns are observed on different conditions and the microwave field is measured by a movable antenna, which showed a clear relationship between the optical emission patterns and the electron field distributions. A mode transition, from a TE8j mode to a TE16j mode, occurs when the gas pressure increases from 660 to 1000 Pa. And there is an optical emission pattern when the microwave power decreases from 900 to 300 W. All these phenomena are described in detail and analyzed according to the interactional theory of electrons in plasma with microwave.  相似文献   

13.
通过实验和数值模拟研究了聚焦离子束系统中微波离子枪的离子束光学特性,该离子枪由微波等离子体源和Orloff-Swason引出透镜组成。该透镜除了广泛用于场致发射离子枪外,在等离子体源情况下,也能获得很好的离子束光学性能。  相似文献   

14.
地面电推进试验、星载Langmuir探针地面标定等航天任务,均对等离子体参数的校准提出了需求。目前,等离子体参数的校准主要是在稳定的等离子体环境中,通过被测仪器与标准进行量值比对的方式实现,因此,获得稳定的等离子体环境是开展校准技术研究的重要前提。微波ECR源产生的等离子体具有均匀、稳定、可调节范围宽等特点,十分适合应用于等离子体校准中。本文设计研制了永磁型微波ECR等离子体源,并对该源的特性进行了实验研究,获得了该源的空间分布特性、稳定性实验结果。实验结果表明:研制的紧凑型微波ECR源稳定性、重复性均在10%以内,具有作为标准源应用于等离子体校准的潜力。  相似文献   

15.
A high power (2 kW, CW) magnetron-based microwave system operating at 2.45 GHz has been designed, tested, characterized, and used to produce plasma. The system consists of a microwave source, an isolator, a directional coupler, a three-stub tuner, a high voltage break, a microwave vacuum window, and a microwave launcher. These microwave components were simulated using microwave studio software. The low power and full term characterization of the microwave system has been done using vector network analyzer. The system was tested for 2 kW continuous wave of microwave power using glass-water load. The microwave system has been developed to study the microwave interaction with plasma at different operation regimes (Gases: Nitrogen, argon and hydrogen; Gas pressure : 10?5–10?3 mbar; Microwave power : 300–1000 W; Magnetic field: 875–1000 G) and to extract the proton beam current with hydrogen produced plasma. A plasma density ~5 × 1011 cm?3 and average electron temperature of ~13 eV was obtained. This article describes various aspects of the microwave system including design, fabrication, characterization and performance studies of the microwave components.  相似文献   

16.
In this paper, the hydrogen and hydrogen-methane mixed plasma have been generated inside a 33 cm diameter quartz bell jar with a low power (9 KW) and lower frequency 915 MHz microwave plasma chemical vapor deposition system. The reactor is being used for growing polycrystalline diamond (PCD) over large area (100 mm). The generated plasma is diagnosed by in situ optical emission spectroscopy method with wave length ranging from 200 to 900 nm. The effects of microwave power, chamber pressure and gas concentration on plasma characteristics have been studied in this work. Within the optical range, Balmer H α , H β , C2swan band and CH lines have been detected at the wavelengths of 655.95, 485.7, 515.82 and 430.17 nm, respectively. It has been observed that for hydrogen plasma, the amount of transition from hydrogen atom inner shell 3 to 2 (H α ) is almost constant with increasing microwave (MW) power (from 2000 to 2800 W) and pressure (from 15 to 30 Torr) initially, after that it increases with further increase of MW power and pressure, whereas, the transition from 4 to 2 (H β ) is slowly increased with increasing MW power and pressure. For hydrogen-methane plasma, intensities of C2 swan band, i.e., the transitions from D3π g to A3π μ energy levels, are also increased with the increasing microwave power and reactor pressure. It has been observed that the radicals present in the plasma are affected by variation of different reactor parameters like pressure, MW power, CH4 concentration, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号