首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic removal of methylene blue by cedar sawdust and crushed brick was studied in packed bed columns. The values of column parameters were predicted as a function of flow rate and bed height. On evaluating the breakthrough curves, the sorption isotherms of methylene blue onto cedar sawdust and crushed brick in 20 degrees C aqueous solution were experimentally determined in batch conditions. Both the Freundlich and the Langmuir models were found to fit the sorption isotherm data well, but the Langmuir model was better. A series of column tests using cedar sawdust and crushed brick as low-cost sorbents were performed to determine the breakthrough curves with varying bed heights and flow rates. To predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design, five kinetic models; Bohart and Adams, bed depth service time (BDST), Clark, Wolborska, and Yoon and Nelson models were applied to experimental data. All models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to flow rate and bed height, with the exception of Bohart and Adams model. The simulation of the whole breakthrough curve was effective with the Yoon and Nelson and the Clark models, but the breakthrough was best predicted by the Wolborska model.  相似文献   

2.
Aim of this study is the determination of the Cr(VI) removal efficiency of treated pine sawdust and also to find out the thermodynamic and kinetic parameters of Cr(VI) removal process in batch systems. Sawdust has been treated with 1,5-disodium hydrogen phosphate before the adsorption experiments. The effects of initial concentration of Cr(VI) ion, temperature, amount of adsorbent and pH of the solution on adsorption have been investigated. Optimum conditions for adsorption were determined as T=40 degrees C, sawdust dose=4 g, pH 2, by using the results of these experiments and an additional set of experiments was performed under these optimum conditions in order to see the change in the adsorption efficiency. Removal of chromium ion was found as highly dependent on pH and initial Cr(VI) concentration of the solution. In order to find out thermodynamic and kinetic parameters equilibrium adsorption models were applied. Although experimental data confirm with both Langmuir and Freundlich isotherm models, they suit most on Langmuir isotherms. Adsorption rate constant was determined from Lagergren equation. Equilibrium constants, adsorption free energy, enthalpy and entropy change values were also determined. It was found that adsorption process follows first order kinetic and adsorption of Cr(VI) on sawdust has the spontaneous nature.  相似文献   

3.
Meranti (Philippine mahogany) sawdust, an inexpensive material, showed strong scavenging behaviour through adsorption for the removal of methylene blue (MB) from aqueous solution. Batch studies were performed to evaluate and optimize the effects of various parameters such as contact time, pH, initial dye concentrations and adsorbent dosage. Langmuir, Freundlich and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The experimental data fitted well with the Langmuir adsorption isotherm, indicating thereby the mono layer adsorption of the dye. The monolayer sorption capacity of meranti sawdust for MB was found to be 120.48, 117.64, 149.25 and 158.73 mg/g at 30, 40, 50 and 60 °C, respectively. Thermodynamic calculations showed that the MB adsorption process is endothermic and spontaneous in nature. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model. The results indicated that the meranti sawdust could be an alternative material in place of more costly adsorbents used for dye removal.  相似文献   

4.
The reuse of dried activated sludge for adsorption of reactive dye   总被引:3,自引:0,他引:3  
Adsorption processes are alternative effective methods for removal of textile dyes from aqueous solutions. The adsorption ability of adsorbent affects by physico-chemical environment for this reason in this paper effect of initial pH, dye concentrations, temperature and dye hydrolyzation were determined in a batch system for removal of reactive dye by dried activated sludge. The Langmuir isotherm model was well described of adsorption reactive dye and maximum monolayer adsorption capacity (at pH 2) of activated sludge was determined as 116, 93 and 71mgg(-1) for 20 degrees , 35 degrees and 50 degrees C, respectively. Initial pH 2, 20 degrees C and 30min contact time are suitable for removal of reactive dyes from aqueous solutions. Activated sludge was characterized by FT-IR analysis and results showed that active sludge has different functional groups and functional groups of activated sludge are able to react with dye molecules in aqueous solution. The pseudo first-order, second-order and intraparticle diffusion kinetics were used to describe the kinetic data. The pseudo second-order kinetic model was fit well over the range of contact times and also an intra particle diffusion kinetic model was fit well but in the first 30min. The dye hydrolyzation was affected adsorption capacity of biomass and adsorption capacity of biomass decreased with dye hydrolyzation from 74 to 38mgg(-1).  相似文献   

5.
Adsorption capacity of Cr(VI) onto Hevea Brasilinesis (Rubber wood) sawdust activated carbon was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and temperature. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. Increases in adsorption capacity with increase in temperature indicate that the adsorption reaction is endothermic. Based on this study, the thermodynamic parameters like standard Gibb's free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ) and standard entropy (DeltaS degrees ) were evaluated. Adsorption kinetics of Cr(VI) ions onto rubber wood sawdust activated carbon were analyzed by pseudo first-order and pseudo second-order models. Pseudo second-order model was found to explain the kinetics of Cr(VI) adsorption most effectively. Intraparticle diffusion studies at different temperatures show that the mechanism of adsorption is mainly dependent on diffusion. The rate of intraparticle diffusion, film diffusion coefficient and pore diffusion coefficient at various temperatures were evaluated. The Langmuir, Freundlich and Temkin isotherm were used to describe the adsorption equilibrium studies of rubber wood sawdust activated carbon at different temperatures. Langmuir isotherm shows better fit than Freundlich and Temkin isotherm in the temperature range studied. The result shows that the rubber wood sawdust activated carbon can be efficiently used for the treatment of wastewaters containing chromium as a low cost alternative compared to commercial activated carbon and other adsorbents reported.  相似文献   

6.
Bottom Ash and De-Oiled Soya have been used as adsorbents for the removal of a hazardous azo dye-Metanil Yellow from its aqueous solutions. Adsorption of Metanil Yellow on these adsorbents has been studied as function of time, temperature, concentration and pH. Batch adsorption studies, kinetic studies and column operations enabled extraction of lethal dye from wastewaters. Adsorption equilibrium data confirms both Langmuir and Freundlich isotherm models and monolayer coverage of dye over adsorbents. Kinetic data have been employed to calculate specific rate constants, indicating thereby involvement of first order kinetics in the on-going adsorption and activation energy was determined as 0.813 and 1.060 kJ mol(-1) for Bottom Ash and De-Oiled Soya, respectively. For both adsorbents, the adsorption process has been found governing by film diffusion, over the entire concentration range. Column operations have also been performed for the bulk removal of the dye and also to examine the practical utilization of fixed bed adsorption technique in elimination of dangerous effluent. Saturation factors for Bottom Ash and De-Oiled Soya columns have been calculated as 99.15 and 99.38%, respectively. Attempts have also been made to regenerate the dye from the exhausted columns using aqueous sodium hydroxide as eluent.  相似文献   

7.
The adsorption of malachite green (MG) from aqueous solution by two different adsorbents (CZn5, PETNa8) were studied. Adsorbents were prepared from pine sawdust and polyethyleneterephatalate (PET) by chemical activation with ZnCl(2) and NaOH, respectively. The adsorption was carried out in a batch system as a function of dye concentration, pH and contact time. Both adsorbents were found to be very effective in removing the dye at high concentration with adsorption percentage in the order of CZn5 > PETNa8. The pH of dye solution in the range of 6-10, was found favorable for the removal of malachite green by using the two adsorbents at high concentrations. Equilibrium times were 120 and 90 min for CZN5 and PETNa8, respectively. Kinetics of removal MG was studied using Lagergren equation and diffusion phenomena was analyzed using Weber and Morris intraparticle diffusion plots. It was also showed that the adsorption isotherm followed Langmuir model.  相似文献   

8.
Kinetics and mechanism of removal of methylene blue by adsorption onto perlite   总被引:12,自引:0,他引:12  
The kinetics and mechanism of methylene blue adsorption on perlite have been studied. The effects of various experimental parameters, such as initial dye concentration, temperature and pH on the adsorption rate were investigated. Adsorption measurements show that the process is very fast and physical in nature. The extent of the dye removal increased with increase in the initial concentration of the dye and the initial pH and temperature of solution. Adsorption data were modelled using the first and second-order kinetic equations, mass transfer and intra-particle diffusion models. It was shown that the second-order kinetic equation could best describe the sorption kinetics. The diffusion coefficient, D, was found to increase when the initial dye concentration, pH and temperature were raised. Thermodynamic activation parameters, such as DeltaG*, DeltaS* and DeltaH*, were calculated.  相似文献   

9.
Adsorptive removal of methylene blue by tea waste   总被引:3,自引:0,他引:3  
The potentiality of tea waste for the adsorptive removal of methylene blue, a cationic dye, from aqueous solution was studied. Batch kinetics and isotherm studies were carried out under varying experimental conditions of contact time, initial methylene blue concentration, adsorbent dosage and pH. The nature of the possible adsorbent and methylene blue interactions was examined by the FTIR technique. The pH(pzc) of the adsorbent was estimated by titration method and a value of 4.3+/-0.2 was obtained. An adsorption-desorption study was carried out resulting the mechanism of adsorption was reversible and ion-exchange. Adsorption equilibrium of tea waste reached within 5h for methylene blue concentrations of 20-50mg/L. The sorption was analyzed using pseudo-first-order and pseudo-second order kinetic models and the sorption kinetics was found to follow a pseudo-second order kinetic model. The extent of the dye removal increased with increasing initial dye concentration. The equilibrium data in aqueous solutions were well represented by the Langmuir isotherm model. The adsorption capacity of methylene blue onto tea waste was found to be as high as 85.16mg/g, which is several folds higher than the adsorption capacity of a number of recently studied in the literature potential adsorbents. Tea waste appears as a very prospective adsorbent for the removal of methylene blue from aqueous solution.  相似文献   

10.
The potential of garlic peel (GP), agricultural waste, to remove methylene blue (MB) from aqueous solution was evaluated in a batch process. Experiments were carried out as function of contact time, initial concentration (25-200mg/L), pH (4-12) and temperature (303, 313 and 323 K). Adsorption isotherms were modeled with the Langmuir, Freundlich, and Temkin isotherms. The data fitted well with the Freundlich isotherm. The maximum monolayer adsorption capacities were found to be 82.64, 123.45, and 142.86 mg/g at 303, 313, and 323 K, respectively. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the garlic peel could be an alternative for more costly adsorbents used for dye removal.  相似文献   

11.
The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, which was used in natural and carbonized forms, as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with sulfuric acid produced a non-activated carbonaceous material (C-PW). Both PW and C-PW were tested as low-cost adsorbents for the removal of MB from aqueous effluents. It was observed that C-PW leaded to a remarkable increase in the specific surface area, average porous volume, and average porous diameter of the adsorbent when compared to PW. The effects of shaking time, adsorbent dosage and pH on adsorption capacity were studied. In basic pH region (pH 8.5) the adsorption of MB was favorable. The contact time required to obtain the equilibrium was 6 and 4h at 25 degrees C, using PW and C-PW as adsorbents, respectively. Based on error function values (F(error)) the kinetic data were better fitted to fractionary-order kinetic model when compared to pseudo-first order, pseudo-second order, and chemisorption kinetic models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For MB dye the equilibrium data were better fitted to the Sips isotherm model using PW and C-PW as adsorbents.  相似文献   

12.
The adsorption of Congo red (CR) into three new adsorbents including Palladium and silver nanoparticles loaded on activated carbon (Pd NPs-AC, Ag NPs-AC) and zinc oxide nanorods loaded on activated carbon (ZnO-NRs-AC) in a batch method has been studied following the optimization of effective variables including pH, amount of adsorbents and time. The experimental data was fitted to conventional kinetic models including the pseudo first-order and second-order Elovich and intraparticle diffusion model and based on calculated respective parameters such as rate constants, equilibrium adsorption capacities and correlation coefficients. It was found that for all adsorbents the removal process follows the pseudo second other kinetic model with involvement of interparticle diffusion model. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Tempkin and Dubinin and Radushkevich equations and it was found for all adsorbents that the removal process followed the Langmuir isotherm.  相似文献   

13.
In this study, the preparation of activated carbon from almond shell with H2SO4 activation and its ability to remove toxic hexavalent chromium from aqueous solutions are reported. The influences of several operating parameters such as pH, particle size and temperature on the adsorption capacity were investigated. Adsorption of Cr(VI) is found to be highly pH, particle size and temperature dependent. Four adsorption isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich were used to analyze the equilibrium data. The Langmuir isotherm provided the best correlation for Cr(VI) onto the almond shell activated carbon (ASC). Adsorption capacity was calculated from the Langmuir isotherm as 190.3 mg/g at 323 K. Thermodynamic parameters were evaluated and the adsorption was endothermic showing monolayer adsorption of Cr(VI). Five error functions were used to treat the equilibrium data using non-linear optimization techniques for evaluating the fit of the isotherm equations. The highest correlation for the isotherm equations in this system was obtained for the Freundlich isotherm. ASC is found to be inexpensive and effective adsorbent for removal of Cr(VI) from aqueous solutions.  相似文献   

14.
Nitrate removal from aqueous solution by adsorption onto various materials   总被引:10,自引:0,他引:10  
In this study sepiolite, sepiolite activated by HCl, slag and powdered activated carbon were used as adsorbent with a particle size was between 71 and 80 microm (200-170 mesh). NaNO3 solution (100 mg/l) was used in batch adsorption experiments for nitrate removal. First kinetic studies were carried out and it was determined that slag was not effective for nitrate removal, then contact time, pH and adsorbent dosage effects on nitrate removal by adsorption were investigated using other adsorbents except slag. The equilibrium time was found to be 30, 45, 5 min for sepiolite, powdered activated carbon and activated sepiolite, respectively. The most effective pH value for nitrate removal was 2 for powdered activated carbon. pH value did not affect nitrate removal significantly for other adsorbents. Adsorbent dosages were varied from 5 to 20 g/l solutions. An increase in adsorbent dosage increased the percent removal of nitrate. A series of isotherm studies were undertaken and the data evaluated for compliance with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanisms, three simplified kinetic models, i.e., first-, second-order and intraparticle diffusion were tested. Adsorption followed second-order rate kinetics. The correlation coefficients for second order kinetic model are greater than 0.996. Experimental data show that sepiolite activated by HCl was effective for nitrate removal.  相似文献   

15.
Sorption of acid red 57 from aqueous solution onto sepiolite   总被引:6,自引:0,他引:6  
Sepiolite, a highly porous mineral, is becoming widely used as an alternative material in areas where sorptive, catalytic and rheological applications are required. High ion exchange capacity and high surface area and more importantly its relatively cheap price make it an attractive adsorbent. In this study, the adsorption of acid red 57 by natural mesoporous sepiolite has been examined in order to measure the ability of this mineral to remove coloured textile dyes from wastewater. For this purpose, a series of batch adsorption tests of acid red 57 from aqueous sepiolite solutions have been systematically investigated as a function of parameters such as pH, ionic strength and temperature. Adsorption equilibrium was reached within 1h. The removal of acid red 57 decreases with pH from 3 to 9 and temperature from 25 to 55 degrees C, whereas it increases with ionic strength from 0 to 0.5 mol L(-1). Adsorption isotherms of acid red on sepiolite were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. It was found that the Langmuir model appears to fit the isotherm data better than the Freundlich model. The physical properties of this adsorbent were consistent with the parameters obtained from the isotherm equations. Approximately, 21.49% weight loss was observed. The surface area value of sepiolite was 342 m2 g(-1) at 105 degrees C, and it increased to 357 m2 g(-1) at 200 degrees C. Further increase in temperature caused channel plugging and crystal structure deformation, as a result the surface area values showed a decrease with temperature. The data obtained from adsorption isotherms at different temperatures have been used to calculate some thermodynamic quantities such as the Gibbs energy, heat and entropy of adsorption. The thermodynamic data indicate that acid red 57 adsorption onto sepiolite is characterized by physical adsorption. The dimensionless separation factor (RL) have shown that sepiolite can be used for removal of acid red 57 from aqueous solutions. The sorption capacity of the sepiolite is comparable to the other available adsorbents, and it is quite cheaper.  相似文献   

16.
Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 degrees C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy (DeltaH degrees), standard entropy (DeltaS degrees) and standard free energy (DeltaG degrees) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.  相似文献   

17.
Mesoporous carbon CMK-3 was synthesized by using SBA-15 silica mesoporous as hard template and characterized through nitrogen adsorption/desorption and low angle X-ray diffraction.As-prepared material with large pores and high surface area was used to remove Orange G dye from aqueous solution.Adsorption experiments were carried out as batch studies at variety of contact times,pH,initial dye concentrations,temperatures and salt concentrations.Langmuir and Freundlich isotherm models were employed to simulate the equilibrium data of anionic dye.It was found that the equilibrium data were well represented by the Langmuir isotherm,yielding maximum monolayer adsorption capacity of 189 mg/g.Experimental data were analyzed using pseudo-first order and pseudo-second order kinetic models and obtained results indicated that kinetics followed a pseudo-second order equation.  相似文献   

18.
Different types of acid pretreatment are known to influence the removal of certain components from pine wood sawdust, due to differences in the acid hydrolysis, which also predetermine the final formation and adsorptive properties of the produced activated carbon (AC) through subsequent potassium hydroxide activation. AC made by using phosphorous acid as an acid pretreatment had the largest absorption capacity of methylene blue (MB) dye due to its highest acidity. Subsequently, the effects on the adsorption variables for this AC such as initial pH, MB concentration, contact time and temperature were investigated. The resulting adsorption process was classified as pseudo-second-order kinetic model, and the Langmuir isotherm model better described the equilibrium data in comparison with the Freundlich isotherm model. The outcome showed that a lower temperature had an increased adsorption capacity of sawdust-derived AC pretreated with phosphorous acid, which allowed maximum adsorption capacities of 303.03 mg/g at 30 °C, implying that the adsorption was an endothermic process. Phosphorous acid pretreatment and activation processes proved to be an effective strategy to prepare highly porous AC from sawdust, with high potential to cationic dye removal from liquid phases.  相似文献   

19.
The removal of Cr(VI), Pb(II), Hg(II) and Cu(II), by treated sawdust has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models. Adsorption capacity for treated sawdust, i.e. Cr(VI) (111.61 mg/g), Pb(II) (52.38 mg/g), Hg(II) (20.62 mg/g), and Cu(II) (5.64 mg/g), respectively. Surface complexation and ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on treated sawdust satisfies not only the Langmuir assumptions but also the Freundlich assumptions. The applicability of Lagergren kinetic model has also been investigated. The adsorption follows first-order kinetics. Thermodynamic constant (kad), standard free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated for predicting the nature of adsorption. The percentage adsorption increases with pH to attain a maximum at pH 6 and thereafter it decreases with further increase in pH. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed.  相似文献   

20.
Newspaper pulp was found to be a potential adsorbent for removal of copper from aqueous medium. Detail adsorption study of Cu on newspaper pulp was investigated. Batch adsorption study was carried out as a function of contact time, adsorbent dose, temperature (303-323 K). The experimental data was analyzed using Freundlich, Langmuir, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherm models. It was found that Freundlich, Langmuir and R-P models fitted well. pH variation study revealed that the adsorption increased with increase in pH of the solution. Maximum loading capacity was found to be 30 mg g(-1) at 20 mg L(-1) of initial Cu concentration. Adsorption data were analyzed using two kinetic models, Lagergren first order and pseudo second order. It was observed that pseudo second order represented the best correlation. Langmuir isotherm was used to obtain the thermodynamic parameters such as free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption. The negative value of free energy and positive value of enthalpy change indicate that the adsorption of Cu on newspaper pulp is a spontaneous process and endothermic. The results of activation energy also confirmed that the adsorption of Cu on newspaper pulp is physical in nature. Present investigation emphasized that newspaper pulp may be utilized as a low cost adsorbent for copper removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号