首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用基于密度泛函理论的第一性原理,系统研究了Heusler合金Fe2CuGa的结构、磁性、弹性性能和电子性质。计算结果表明:立方相的基态结构是铁磁态的Hg2CuTi结构。立方到四方的相变几乎是体积不变的,这是形状记忆合金的特性。奥氏体和马氏体的磁矩分别是4.48和4.56μB/f.u.。另外,预测了Fe2CuGa的弹性系数。Fe2CuGa的立方结构在力学上是不稳定的而四方结构是稳定的。根据体模量和剪切模量的比值,发现Fe2CuGa在本质上是可延展的。利用态密度的方法解释了Fe2CuGa马氏体相变的来源。  相似文献   

2.
余慧茹  李则河  王海波  蔡伟 《功能材料》2006,37(12):1876-1878
采用光学显微镜、X射线衍射分析及差示扫描量热法系统研究了Co含量对Ni56Fe17Ga27-xCox合金组织结构和马氏体相变的影响.结果表明,室温下铸态Ni56Fe17Ga27-xCox合金显微组织由马氏体和γ相两相组成,γ相随Co含量增加而增多, Ni56Fe17Ga21Co6合金中γ相的体积百分含量达到70%.马氏体相为单斜6M结构.试验合金冷却和加热过程中发生一步马氏体相变及其逆转变,相变温度(Ms、As)随Co含量增加而升高.  相似文献   

3.
研究了热处理对Ni55.30Fe17.60Ga27.10磁致形状记忆合金组织和马氏体相变的影响.电弧态合金组织中马氏体板条模糊.在氩气保护,800℃保温4h缓慢冷却条件下热处理后,马氏体板条规整平直.DSC结果表明Ni55.30Fe17.60Ga27.10合金在加热/冷却时发生热弹性马氏体相变.热处理后Ms=43.24℃,Mf=36.72℃,As=46.84℃,Af=51.83℃.相比电弧态,热处理后合金Ms和Mf提高,As和Af降低,相变滞后减小.XRD结果证明热致马氏体为14M马氏体.  相似文献   

4.
研究了铸态及快淬Ni50Mn26Ga19Fe5掺杂合金的磁致应变性能.结果表明,掺Fe的Ni-Mn-Ga合金也具有典型的热弹性马氏体相变过程和磁转变过程,但铸态合金的结构为7层调制型马氏体(7M),而快淬合金的结构为14层调制型马氏体(14M).铸态合金最大磁致应变可达0.1%,快淬薄带合金最大磁致应变只能达到0.0095%.Ni50Mn26Ga19Fe5铸态合金比快淬合金有更大的磁致应变,说明掺杂元素Fe在Ni-Mn-Ga合金中的作用较为复杂.  相似文献   

5.
周惦武  何蓉  刘金水  彭平 《材料导报》2017,31(22):146-152
采用基于密度泛函理论的第一性原理计算方法,研究Ge、Si元素对锆合金中与腐蚀相关的ZrO_2氧化膜相和Zr(Fe,Cr)_2第二相能量与电子结构的影响。合金形成热、结合能的计算结果表明:ZrO_2四方相结构不稳定,立方相易形成且结构稳定,氧化膜晶体结构从四方相向立方相发生转变影响锆合金的耐腐蚀性能;Ge、Si元素均降低ZrO_2立方相的结构稳定性和形成能力,与Ge相比,Si易取代Zr(Fe,Cr)_2第二相中的Cr,增加锆合金Fe/Cr原子比。电子态密度和Mulliken电子占据数的计算结果表明:ZrO_2中Zr与O存在杂化共振与较强的离子键作用,Ge、Si降低ZrO_2立方相结构稳定性的原因主要在于削弱了Zr-O之间的离子键作用;ZrO_2氧化膜相和Zr(Fe,Cr)_2第二相是影响锆合金耐腐蚀性能的两个重要因素,对Si而言,形成含Si的Zr(Fe,Cr)_2第二相对锆合金耐腐蚀性能产生不利影响,改善锆合金耐腐蚀性能需要ZrO_2晶体结构改变占主导地位;对Ge而言,含Ge的Zr(Fe,Cr)_2第二相难形成,第二相对锆合金耐腐蚀性能的影响相对Si较小,减缓ZrO_2由四方相向立方相的转变倾向,是Ge改善锆合金耐腐蚀性能的重要原因。  相似文献   

6.
利用净能量控制的PRAXAIR4500型等离子喷涂系统,在钛合金基体上制备出HA/ZrO2功能梯度涂层,采用HTEM、XRD、SEM等对涂层过渡层ZrO2相的结构特征进行分析.结果表明:(1)富锆的过渡层存在ZrO2 3种晶型,主要以四方氧化锆为主,含有少量的立方氧化锆及微量的单斜氧化锆和CaZrO3,单斜氧化锆的出现说明材料内发生了四方氧化锆向单斜氧化锆马氏体相变,这种马氏体相变有利于提高HA材料的韧性;(2)生物活性功能涂层的富锆过渡层致密,与钛合金基体结合紧密,纯羟基磷灰石的表面层具有典型的多孔结构特征,整个涂层沿垂直基体方向从过渡层致密结构向表面层多孔结构过渡;涂层的这种结构特征有利于改善功能梯度涂层的综合性能,提高涂层与基体的结合强度,其结合强度达到48.6MPa.  相似文献   

7.
详细研究了Ni50Mn38-xIn12Fex(x=0,3,4,5,6)合金体系中Fe取代Mn对合金马氏体相变行为及磁学性能的影响.发现当x≤4时,合金表现出由B2结构的奥氏体向正交结构的马氏体转变的相变行为,而当x≥5时该相变被完全抑制.当Fe对Mn的取代超过3%时,合金的显微结构中出现y相,并发现其数量随Fe含量的增加而增加.γ相的形成改变了合金基体相成分,进而带来了基体相e/a(每原子的电子浓度)值的变化,研究结果证明合金的一系列性能改变均与基体相e/a值的变化相关.第一,基体相e/a(每原子的电子浓度)值随着Fe含量的增加而迅速减小,导致了合金马氏体相变温度、相变潜热及相变熵变的降低.第二,Fe的引入有效地增强了合金基体相的铁磁性能,提高了合金的居里转变温度和合金的磁化强度.详细阐述了Fe的引入是合金马氏体相变及磁学性能变化的本质原因.  相似文献   

8.
以Ni-Mn-Ga合金微丝为基础分析Fe元素掺杂前后对合金微丝的形状记忆效应的变化。用真空磁控钨极电弧熔炼炉制备Ni-Mn-Ga-Fe合金,并用高真空精密熔体抽拉设备将母合金制备成微丝。采用EDS能谱分析仪、DSC差示扫描量热分析仪、XRD、DMA动态机械分析仪,研究Fe元素掺杂Ni-Mn-Ga合金微丝后的物相、马氏体相变行为、微丝的形状记忆效应。结果表明,Ni-Mn-Ga-Fe合金微丝显示的是四方结构马氏体相和面心立方结构奥氏体相的混合相,对微丝采用步进式阶梯有序化热处理,有序化热处理能有效降低微丝内部缺陷,释放内应力,细化微丝内部晶粒,收缩晶格体积,马氏体孪晶界面更加平直,孪晶面更易移动,微丝的伸长率提高。在258 K下对制备态Ni-Mn-Ga-Fe合金微丝进行单程形状记忆的测试,拉伸到350 MPa后卸载到0 MPa,随后将微丝升温到奥氏体态后,应变恢复率为78.75%,而在289K对有序化热处理态Ni-Mn-Ga-Fe合金微丝进行单程形状记忆测试,应变恢复率达到100%。在126 MPa和240 MPa下分别对有序化热处理态三元Ni-Mn-Ga合金微丝和Ni-Mn-Ga-Fe合...  相似文献   

9.
汪广进  黄菲  龚春丽  刘海  程凡  文胜  郑根稳  潘牧 《材料导报》2015,29(12):145-148
采用基于第一性原理的密度泛函理论投影缀加平面波,使用广义梯度近似处理交换关联势能,深入研究了弛豫多相 ZrO2几何结构特征及电子结构。研究发现,单斜、四方和立方 ZrO2能带间隙分别约为3.47 eV、3.96 eV 和3.36 eV。近费米能级态密度分析结果表明,多相 ZrO2的基本性质均由 O 2p 态电子和 Zr 4d 态电子决定。  相似文献   

10.
采用磁控溅射方法制备了Ni_(56)Mn_(27)Ga_(17)高温形状记忆合金薄膜,研究了薄膜的马氏体相变行为和组织结构.试验结果表明,Ni_(56)Mn_(27)Ga_(17)薄膜马氏体相变开始温度高达584K,该薄膜室温下为非调制四方结构马氏体.透射电镜观察进一步表明,其马氏体亚结构为(111)I型孪晶.  相似文献   

11.
The rapid mechanochemical synthesis of nanocrystalline CuFeS2 particles prepared by high-energy milling for 60?min in a planetary mill from copper, iron and sulphur elements is reported. The CuFeS2 nanoparticles crystallize in tetragonal structure with mean crystallite size of about 38?±?1?nm determined by XRD analysis. HRTEM study also revealed the presence of nanocrystals with the size of 5–30?nm with the tendency to form agglomerates. The Raman spectrum confirms the chalcopyrite structure. Low temperature magnetic data for CuFeS2 support the coexistence of antiferromagnetic and paramagnetic spin structure. Moreover, the hysteresis loops taken at temperatures from 5?K to 300?K revealed a presence of very small amount of ferromagnetic phase, which seems to be associated with the non-consumed elemental Fe in as-prepared nanoparticles. The optical band gap of CuFeS2 nanoparticles has been detected to be 1.05?eV, larger than band gap of the bulk material. The wider gap possibly resulted from the nano-size effect. Photoresponses of CuFeS2 nanoparticles were confirmed by I-V measurements under dark and light illumination. It was demonstrated that mechanochemical synthesis can be successfully employed in the one step preparation of nanocrystalline CuFeS2 with good structural, magnetic, optical and electrooptical properties.  相似文献   

12.
A complex analysis of engineering properties of concrete containing natural zeolite as supplementary cementitious material in the blended Portland-cement based binder in an amount of up to 60% by mass is presented. The studied parameters include basic physical characteristics, mechanical and fracture–mechanics properties, durability characteristics, and hygric and thermal properties. Experimental results show that 20% zeolite content in the blended binder is the most suitable option. For this cement replacement level the compressive strength, bending strength, effective fracture toughness, effective toughness, and specific fracture energy are only slightly worse than for the reference Portland-cement concrete. The frost resistance, de-icing salt resistance, and chemical resistance to MgCl2, NH4Cl, Na2SO4, and HCl are improved. The hygrothermal performance of hardened mixes containing 20% natural zeolite, as assessed using the measured values of water absorption coefficient, water vapor diffusion coefficient, water vapor sorption isotherms, thermal conductivity, and specific heat capacity, is satisfactory.  相似文献   

13.
Highly conductive and transparent films of Ga-doped ZnO (GZO) have been prepared by pulsed laser deposition using a ZnO target with Ga2O3 dopant of 3 wt.% in content added. Films with resistivity as low as 3.3 × 10− 4 Ω cm and transmittance above 80% at the wavelength between 400 and 800 nm can be produced on glass substrate at room temperature. It is shown that a stable resistivity for use in oxidation ambient at high temperature can be attained for the films. The electrical and optical properties, as well as the thermal stability of resistivity, of GZO films were comparable to those of undoped ZnO films.  相似文献   

14.
Electronic and elastic properties of a series of the transition metal ion mononitrides (ScN, TiN, VN, CrN, ZrN, NbN) have been modeled in the framework of ab initio plane wave spin-polarized calculations using the generalized gradient and local density approximations. The calculated band structures are typical for metallic compounds, except for ScN, whose band structure is that one of the gapless semiconductor. Strongly delocalized d states of transition metal ions are spread over a wide region of about 10-12 eV and are strongly hybridized with the nitrogen 2p states. Among the considered nitrides, only CrN exhibits a clear difference between the spin-up and spin-down states, which would manifest itself in magnetic properties. The overall appearance of the calculated cross-sections of the electron density difference changes drastically when going from Sc to Nb in the considered series of compounds. For the first time the calculated tensors of the elastic constants and elastic compliance constants were used for the analysis and visualization of the directional dependence of the Young’s moduli. It was shown that ScN and VN can be characterized as more or less elastically isotropic materials, whereas in TiN, CrN, ZrN, and NbN the Young’s moduli vary significantly in different directions. The maximal values of the Young’s moduli are along the crystallographic axes, the minimal values are along the bisector direction in the coordinate planes; the difference between them in the case of CrN exceeds one order of magnitude. In addition, pressure dependence of the “metal - nitrogen” distance was modeled.  相似文献   

15.
We report the results of a detailed first-principles based density functional theory study of the structural, elastic, electronic and optical properties of a recently synthesized layered semiconductor BaGa2P2. The optimized structural parameters are in excellent agreement with the experimental structural findings, which validates the used theoretical method. The single crystal and polycrystalline elastic constants are numerically estimated using the strain–stress method and Voigt–Reuss–Hill approximations. Predicted values of the elastic constants suggest that the considered material is mechanically stable, brittle and very soft material. The three-dimensional surface and its planar projections of Young’s modulus are visualized to illustrate the elastic anisotropy. It is found that Young’s modulus of BaGa2P2 show strong dependence on the crystallographic directions. Band structure calculation reveals that BaGa2P2 is a direct energy band gap semiconductor. The effective masses of electrons and holes at the minimum of the conduction band and maximum of the valence band are numerically estimated. The density of state, charge density distribution and charge transfers are calculated and analyzed to determine the chemical bonding nature. Dielectric function, refractive index, extinction coefficient, absorption coefficient, reflectivity and electron-loss energy function spectra are computed for a wide photon energy range up to 20 eV. Calculated optical spectra exhibit a noticeable anisotropy.  相似文献   

16.
A series of novel polyimides and copolyimides were obtained by combining 2,7-dimethylacridine-3,6-diamine with one of three aromatic dianhydrides: 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,4′-(4,4′-isopropylidene-diphenoxy)bis(phthalic anhydride) and 4,4′-tetraphthaloyl-bis(1,8-naphthalene dicarboxylic)dianhydride. The resultant polymers showed glass transition temperatures (Tg) in the range 209–331 °C and decomposition temperature (Td) in the range of 370–475 °C. The optical properties, absorption and photoluminescence (PL) of the obtained polymers were investigated in solution and in the solid state as blends with inert poly(methyl methacrylate). The polymers dissolved in NMP emitted blue or green light with the maximum emission wavelength in the range of 438–512 nm, while emitting blue light in the solid state. The electrochemical behavior of the polyimides was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). They exhibited electrochemical band gap in the range of 1.36–2.94 eV.  相似文献   

17.
A systematic study of the influence of alumina (Al2O3) doping on the optical, electrical, and structural characteristics of sputtered ZnO thin films is reported in this study. The ZnO thin films were prepared on 1737F Corning glass substrates by R.F. magnetron sputtering from a ZnO target mixed with Al2O3 of 0-4 wt.%. X-ray diffraction (XRD) analysis demonstrates that the ZnO thin films with Al2O3 of 0-4 wt.% have a highly (002) preferred orientation with only one intense diffraction peak with a full width at half maximum (FWHM) less than 0.5°. The electrical properties of the Al2O3-doped ZnO thin films appear to be strongly dependent on the Al2O3 concentration. The resistivity of the films decreases from 74 Ω·cm to 2.2 × 10− 3 Ω·cm as the Al2O3 content increases from 0 to 4 wt.%. The optical transmittance of the Al2O3-doped ZnO thin films is studied as a function of wavelength in the range 200-800 nm. It exhibits high transparency in the visible-NIR wavelength region with some interference fringes and sharp ultraviolet absorption edges. The optical bandgap of the Al2O3-doped ZnO thin films show a short-wavelength shift with increasing of Al2O3 content.  相似文献   

18.
Prussian blue analogues (PBAs, A2T[M(CN)6], A = Li, K, Na; T = Fe, Co, Ni, Mn, Cu, etc.; M = Fe, Mn, Co, etc.) are a large family of materials with an open framework structure. In recent years, they have been intensively investigated as active materials in the field of energy conversion and storage, such as for alkaline‐ion batteries (lithium‐ion, LIBs; sodium‐ion, NIB; and potassium‐ion, KIBs), and as electrochemical catalysts. Nevertheless, few review papers have focused on the intrinsic chemical and structural properties of Prussian blue (PB) and its analogues. In this Review, a comprehensive insight into the PBAs in terms of their structural and chemical properties, and the effects of these properties on their materials synthesis and corresponding performance is provided.  相似文献   

19.
Polymer based nanocomposites consisting of elastic three-dimensional(3 D)carbon foam(CF),paraffin wax and graphene nanoplatelets(GNPs)have been created and evaluated for thermal energy storage.The ultralight,highly porous(~98.6%porosity),and flexible CFs with densities of2.84-5.26 mg/cm^3 have been used as the backbone skeleton to accommodate phase change wax and nanoscale thermal conductive enhancer,GNP.Low level of defects and the ordered sp2 configuration allow the resulting CFs to exhibit excellent cyclic compressive behavior at strains up to 95%,while retaining part of their elastic properties even after 100 cycles of testing.By dispersing the highly conductive GNP nanofillers in paraffin wax and infiltrating them into the flexible CFs,the resultant nanocomposites were observed to possess enhanced overall thermal conductivity up to 0.76 W/(m K),representing an impressive improvement of226%,which is highly desirable for thermal engineering.  相似文献   

20.
The structural, electrical, luminescent, and magnetic properties of Eu3+-doped Ba0.77Ca0.23TiO3 (BCT23:Eu) ceramics were investigated in this paper. Three different incorporation mechanisms of Eu3+ were realized in BCT23 by considering different charge compensation mechanisms: (i) Ca site substitution with Ca vacancy compensation; (ii) Ti site substitution with O vacancy compensation; (iii) simultaneous substitution at both Ca and Ti sites with self-compensation. Besides the evident ferroelectric properties, the BCT23:Eu ceramics showed the photoluminescence and paramagnetic properties, implying that they can be considered as the multifunctional materials. Both the electric and luminescent properties were sensitive to the Eu doping concentrations and positions, due to the variations of the microstructures and different charge compensation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号