首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
热模压辅助先驱体浸渍裂解制备Cf/SiC复合材料研究   总被引:6,自引:2,他引:4       下载免费PDF全文
以聚碳硅烷为先驱体,采用热模压辅助先驱体浸渍裂解工艺制备3D-B Cf/SiC复合材料,研究了热模压辅助对3D-B Cf/SiC复合材料致密度和力学性能的影响。结果表明:先驱体浸渍裂解制备陶瓷基复合材料第一次浸渍后引入高温热模压工艺可以改善材料微观结构,显著提高材料的致密度和力学性能。其中1600℃,10MPa,1h下热模压辅助先驱体浸渍裂解6次制备的3D-B Cf/SiC复合材料的密度为1.79g/cm3,弯曲强度高达672MPa,断裂韧性达18.9MPa·m1/2,剪切强度接近50MPa,且具有较好的抗热震性和高温抗氧化性。  相似文献   

2.
Cf/Si-O-C复杂形状应用构件的制备   总被引:2,自引:2,他引:0  
结合树脂传递模塑(RTM)和先驱体浸渍裂解技术,以聚硅氧烷(PSO)为先驱体,制备出复杂形状的Cf/Si-O-C陶瓷基复合材料应用构件。根据RTM的工艺要求,研究了二乙烯基苯(DVB)/PSO的交联和裂解,DVB/PSO粘度与温度和时间的关系,DVB/PSO与碳纤维的润湿性以及作用作脱模剂的TiO2薄膜的制备。  相似文献   

3.
不同陶瓷先驱体的裂解过程及粘接性能   总被引:4,自引:0,他引:4  
研究了三种陶瓷先驱体聚硅氮烷(PSZ)、聚硅氧烷(PSO)、聚碳硅烷(PCS)的裂解过程,并对其裂解产物进行了物相分析,在此基础上分别采用这三种先驱体为粘接剂连接碳化硅陶瓷。结果表明,PSZ、PSO在裂解过程中发生了交联反应,获得了较高的陶瓷产率;PCS交联性能较差,陶瓷产率较低;由XRD分析得出,在1200℃~1400℃温度范围内,随着温度的升高,三种先驱体的裂解产物均发生了由非晶态向晶态的转变。连接实验表明,采用PSZ、PSO为粘接材料均能获得较好的连接效果,连接件剪切强度分别达38.6MPa和33.2MPa,连接层厚度小于5μm,其结构较为均匀致密,与基体间界面接合良好;采用PCS为粘接材料时,不能获得有效的连接强度。  相似文献   

4.
以聚硅氧烷为先驱体 ,采用先驱体转化法制备三维编织 Cf/ Si- O- C复合材料。研究发现 ,第一次裂解时采用热压辅助可以明显提高材料的致密度和力学性能。第一次在 1 6 0 0℃ / 1 0 MPa的条件下热压裂解 5 min,后续真空浸渍 -常压裂解处理六个周期所制得的材料具有较高的力学性能 ,其弯曲强度和断裂韧性分别为 5 0 2 MPa,2 3 .7MPa.m1 /2 。讨论了制备工艺对材料结构和性能的影响 ,理想的界面结构与较高的致密度是其具有高性能的主要原因  相似文献   

5.
聚硅氧烷的交联与裂解陶瓷化研究   总被引:2,自引:0,他引:2  
研究了含氢聚硅氧烷(HPSO)与二乙烯基苯(DVB)的交联与裂解行为。结果表明,氯铂酸能有效催化两者之间的交联反应。DVB/HPSO质量比例对交联程度和陶瓷产率有明显影响。催化剂的含量为11.31×10-6、m(DVB)/m(HPSO)=0.5∶1的体系在120℃交联6h后达到完全交联状态。1000℃时裂解完全,陶瓷产率76%,产物组成为38.33%Si、27.33%O、34.34%C。DVB/HPSO的裂解陶瓷化主要发生在370℃~800℃范围内,分为两个阶段。第一阶段在420℃~610℃区间,裂解活化能为208.38kJ/mol,由随机成核步骤控制裂解反应。第二阶段在620℃~800℃区间内,裂解活化能为339.89kJ/mol,由一维扩散步骤控制裂解反应。  相似文献   

6.
碳化硅基复合材料是理想的高温结构材料,以聚碳硅烷(PCS)作为碳化硅陶瓷的先驱体,二乙烯基苯(DVB)为交联体,通过改变二者的配比研究了PCS与DVB的交联反应以及PCS/DVB交联体的热裂解过程。通过傅立叶红外光谱详细研究了PCS/DVB配比变化对PCS与DVB的交联反应和交联体微观结构的影响,PCS/DVB配比最终决定碳化硅陶瓷的产率,当PCS/DVB配比为1∶0.5时,经1500℃热裂解后碳化硅陶瓷产率最高,达到63.1%,热裂解产物为纳米碳化硅,粒径为10-40nm。用SEM和XRD研究了不同PCS/DVB配比交联体热裂解产物的微观结构和相组成,通过热重分析研究了PCS/DVB配比为1∶0.5时交联体的热裂解过程,在400-800℃,PCS/DVB交联体失重显著,在800℃热裂解过程基本完成,PCS/DVB配比为1∶0.5时能够制备出纳米碳化硅基复合材料。  相似文献   

7.
聚碳硅烷先驱体的交联与陶瓷产率   总被引:9,自引:1,他引:8  
本文探讨了可提高先驱体陶瓷产率的PCS/DVB交联条件。研究表明聚碳硅烷交联前的性质和状态是影响先驱体陶瓷产率的主要因素。  相似文献   

8.
本文研究了以连续碳纤维(Cf)三维整体编织物(3D-B)为增强体,以聚碳硅烷(PCS)裂解转化成碳化硅(SiC)为基体的陶瓷基复合材料(CMC)的制备工艺,探讨了不同工艺方法对复合材料微观和宏观性能的影响,并提出进一步改善制各工艺,提高复合材料性能的途径。研究结果表明,采用聚碳硅烷/二乙烯基苯(PCS/DVB)体系浸渍经交联固化后可以大大缩短裂解时间,致密化效率较聚碳硅烷/二甲苯溶液(PCS/Xylene)体系有着显著提高。对于3D-B Cf/SiC CMC用PCS/DVB体系浸渍经7个浸渍裂解周期后试样密度为1.65g/cm3,弯曲强度达326MPa,断裂韧性KIC为13.72MPa·m1/2;用PCS/Xylene体系浸渍的试样密度为1.54g/cm3,弯曲强度为243MPa,断裂韧性KIC为8.19MPa·m1/2。研究中利用扫描电镜观察了弯曲试样的断口以分析材料破坏时纤维的断裂、拨出形貌。  相似文献   

9.
以聚碳硅烷(PCS)/二乙烯基苯(DVB)为先驱体制备了3D-B Cf/SiC复合材料,研究先驱体转化过程中不同裂解升温速率对材料力学性能的影响。结果表明:随着裂解升温速率的提高,材料致密度增加,界面结合变弱,从而陶瓷基复合材料的力学性能明显提高。以15℃/min裂解升温速率制得的陶瓷基复合材料的室温弯曲强度达到556.7MPa,1300℃真空下测试,材料的弯曲强度达到680.3MPa。  相似文献   

10.
研究了廉价聚硅氧烷的交联与裂解情况,并以其为先驱体转化制备Si-O-C陶瓷基复合材料,结果表明,在氯铂酸的催化下,聚硅氧烷与二乙烯基苯可以交联固化,当聚硅氧烷/二乙烯基苯摩尔比为1:0.5时,陶瓷产率达60.52%,经6次浸渍-交-裂解过程制备出碳纤维三维编织物增强陶瓷基复合材料,其密度达到1.59g/cm^3,弯曲强度达到321MPa,断裂韧性达到9.38MPa.m^1/2.  相似文献   

11.
以聚碳硅烷(PCS)/二乙烯基苯(DVB)为先驱体,经8个周期的反复真空浸渍-交联-裂解处理制备出三维编织碳纤维增强碳化硅(3D-B Cf/SiC)复合材料,考察了裂解工艺对材料结构与性能的影响。结果表明:提高裂解升温速率可以提高材料密度,形成较理想的界面结合,从而提高材料的力学性能。裂解温度对材料性能也有较大的影响,Cf/SiC复合材料在第6个周期采用1600℃ 裂解可以弱化纤维与基体之间的界面,提高材料致密度,材料的力学性能也得到较大改善。裂解升温速率为15℃/min,第6个周期采用1600℃裂解制备的Cf/SiC材料性能较好,弯曲强度达到556.7 MPa。   相似文献   

12.
The curing and pyrolysis of hydrogen-containing polysiloxane (PSO) and divinylbenzene (DVB) were investigated in this paper. It was found that H2PtCl6 was an effective catalyst for the curing of DVB/PSO. The mass ratio of DVB/PSO had great effect on ceramic yield. The cured DVB/PSO with a mass ratio of 0.5:1 had the highest ceramic yield (76%) at temperature up to 1000°C, and its pyrolysates consisted of 38.3 wt% silicon, 27.4 wt% oxygen, and 34.3 wt% carbon of which 26.3 wt% was free carbon. The composition and structure of pyrolysates of DVB/PSO were changed with increasing pyrolysis temperature. The pyrolysis behavior of DVB/PSO was characterized by thermal analysis. DVB/PSO-derived Si–O–C composites reinforced with carbon fiber cloth (Cf/Si–O–C) were fabricated. The results showed that the flexural strength of Cf/Si–O–C composites could be increased from 118.00 ± 5.00 MPa to 139.78 ± 7.68 MPa if the pyrolysis temperature was elevated from 1000 to 1400°C, which was ascribed to the weakened interfacial bonding.  相似文献   

13.
以聚硅氧烷为先驱体,采用先驱体转化法制备SiCf/Si-O-C复合材料。研究制备工艺参数模压压力、裂解时升温制度、裂解温度、保温时间对材料的力学性能的影响。通过对复合材料微观结构的分析研究,发现界面结构与致密度是影响SiCf/Si-O-C复合材料性能的主要因素。  相似文献   

14.
低分子量聚碳硅烷制备3D-Cf/SiC复合材料   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了低分子量聚碳硅烷 (PCS) 通过先驱体浸渍裂解 (PIP) 工艺制备Cf/SiC复合材料。分析表明:PCS的数均分子量为400,活性较强,陶瓷化产率为70%左右,在1200℃基本转化为微晶态的β-SiC。分别通过3种不同升温速率制备了3D-Cf/SiC复合材料试样,其弯曲强度分别为745.2MPa、686.7MPa和762.5MPa,明显高于文献报道3D-Cf/SiC复合材料弯曲强度300~500MPa的水平。试样断口的SEM照片均显示长的纤维拔出,有良好的增韧效果,低分子量PCS裂解得到的基体比较致密。实验结果说明,低分子量PCS适合于制备3D-Cf/SiC复合材料,并且提高升温裂解速率对材料性能影响很小。   相似文献   

15.
以聚硅氧烷为先驱体,采用先驱体转化法制备SiCf/Si-O-C复合材料.研究了吸收剂含量不同对复合材料的弯曲强度、密度、热膨胀系数的影响,同时测试了材料对雷达波的反射率,结果表明低频带区有良好的吸波性能.对材料微观结构进行了分析讨论,发现界面结构与致密度是SiCf/Si-O-C复合材料具有高性能的主要原因.  相似文献   

16.
聚硅氧烷先驱体转化制备低成本Si-O-C陶瓷基复合材料   总被引:7,自引:0,他引:7  
研究了廉价聚硅氧烷的交联与裂解情况 ,并以其为先驱体制备出Si O C陶瓷基复合材料。结果表明 ,在氯铂酸的催化下 ,聚硅氧烷与二乙烯基苯可以交联固化。当聚硅氧烷 二乙烯基苯摩尔比为 1∶0 5时 ,陶瓷产率达 6 0 5 2 %。经 6次浸渍 交联 裂解过程制备出碳纤维三维编织物增强陶瓷基复合材料 ,其密度达到1 5 9g cm3 ,弯曲强度达到 32 1MPa ,断裂韧性达到 9 38MPa·m1 2 。  相似文献   

17.
二氧化硅气凝胶以其低密度、高孔隙率等特性在高温隔热领域显示出广阔的应用前景, 但其脆性和高成本的超临界干燥方式限制了其应用。本研究以乙烯基三甲氧基硅烷(VTMS)和乙烯基甲基二甲氧基硅烷(VMDMS)为前驱体, 通过溶胶凝胶、常压干燥制备了具有高柔性的海绵状有机硅气凝胶, 并研究了前驱体摩尔比对气凝胶微观结构和压缩回弹性能的影响, 以及气凝胶分别在高温有氧和无氧环境中的无机化转变过程。结果表明, 随着前驱体中VTMS/VMDMS比例增加, 气凝胶颗粒变小且堆积更紧密, 其压缩回弹性能也随之降低; 在800 ℃空气氛围中, 气凝胶通过侧基的氧化和主链Si-O-Si的断裂、重排转化为无机SiO2; 在800 ℃ N2氛围中, 气凝胶通过裂解反应转化为无机SiO2和游离碳的混合体, 1000~1400 ℃进一步处理后SiO2和游离碳经碳热还原反应生成SiO4、SiCO3、SiC2O2和SiC3O等无定形的Si-O-C结构和少量β-SiC纳米线; 经1200 ℃碳热还原反应生成的Si-O-C结构具有最优的耐高温氧化性能, 可为制备耐高温氧化Si-O-C气凝胶提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号