首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports a facile one-step hydrothermal treatment of graphene oxide (GO) and cobalt acetate (Co(Ac)2) for preparing reduced GO (rGO)/Co3O4 composites which were used as electrode materials for supercapacitors containing electrolytes of 2 M KOH aqueous solution. The morphologies and structures of rGO/Co3O4 composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectrum, and N2 adsorption–desorption isotherms. The electrochemical performances of two-electrode supercapacitors were evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. During the hydrothermal reaction, GO was reduced and 10–30 nm-sized Co3O4 nanoparticles were in situ grown onto the rGO sheets simultaneously. The effects of mass ratios of GO and Co(Ac)2 on the performances of supercapacitors were investigated. In comparison with pure Co3O4-based supercapacitor, supercapacitors based on rGO/Co3O4 composites show better performances because both the specific surface areas and the electrical conductivities of electrode materials were increased by the introduction of rGO. When the mass ratio of GO and Co(Ac)2 is 1:2, rGO/Co3O4 composite electrode exhibits the highest capacitance of 263.0 F/g at a constant current density of 0.2 A/g in a two-electrode supercapacitor. In addition, the supercapacitor shows high rate capability and long cyclic durability.  相似文献   

2.
A simple strategy for the synthesis of heteroatom‐doped porous carbon materials (CMs) via using ionic liquid (IL)‐doped alkali organic salts as small molecular precursors is developed. Doping of alkali organic salts (such as sodium glutamate, sodium tartrate, and sodium citrate) with heteroatoms containing ILs (including 1‐butyl‐3‐methylimidazolium chlorine and 3‐butyl‐4‐methythiazolebromination) not only incorporates the heteroatoms into the carbon frameworks but also highly improves the carbonization yield, as compared with that of either alkali organic salts or ILs as precursors. The porous structure of CMs can be tuned by adjusting the feed ratio of ILs. The porous CMs derived from 1‐butyl‐3‐methylimidazolium chlorine‐doped sodium glutamate exhibit high charge storage capacity with a specific capacitance of 287 F g?1 and good stability over 5000 cycles in 6 m KOH at a current density of 1 A g?1 for supercapacitors. This strategy opens a simple and efficient method for the synthesis of heteroatom‐doped porous CMs.  相似文献   

3.
石墨相氮化碳(g-C_3N_4)已经被认为是一种高效的非金属半导体光催化剂。为进一步优化其光催化性能,通过热解-水热两步法制备了三维网状结构的g-C_3N_4/还原氧化石墨烯(rGO)/钯纳米颗粒(Pd NPs)复合材料。该复合材料由大量超薄片组成,而且薄片上有大量直径约为10nm的Pd NPs。g-C_3N_4/rGO/Pd NPs复合材料展现了一个宽的可见光吸收(边~460nm),其在460~800nm波长范围内还有一个随波长增加的光吸收。经可见光(λ400nm)照射140 min后,g-C_3N_4/rGO/Pd NPs复合材料可降解90%罗丹明B(RhB)。此外,循环实验表明g-C_3N_4/rGO/Pd NPs复合材料具有良好的稳定性。因此,g-C_3N_4/rGO/Pd NPs复合材料有望成为一种高效稳定的光催化剂,在水污染处理领域具有潜在的应用价值。  相似文献   

4.
Nitrogen-doped carbon materials with a large specific surface area,high conductivity,and adjustable microstructures have many prospects for energy-related applications.This is especially true for N-doped nanocarbons used in the electrocatalytic oxygen reduction reaction(ORR)and supercapacitors.Here,we report a low-cost,environmentally friendly,large-scale mechanochemical method of preparing N-doped porous carbons(NPCs)with hierarchical micro-mesopores and a large surface area via ball-milling polymerization followed by pyrolysis.The optimized NPC prepared at 1000°C(NPC-1000)offers excellent ORR activity with an onset potential(Eonset)and half-wave potential(E1/2)of 0.9 and 0.82 V,respectively(vs.a reversible hydrogen electrode),which are only approximately 30 mV lower than that of Pt/C.The rechargeable Zn–air battery assembled using NPC-1000 and the NiFe-layered double hydroxide as bifunctional ORR and oxygen evolution reaction electrodes offered superior cycling stability and comparable discharge performance to RuO2 and Pt/C.Moreover,the supercapacitor electrode equipped with NPC prepared at 800℃ exhibited a high specific capacity(431 F g^−1 at 10 mV s^−1),outstanding rate,performance,and excellent cycling stability in an aqueous 6-M KOH solution.This work demonstrates the potential of the mechanochemical preparation method of porous carbons,which are important for energy conversion and storage.  相似文献   

5.
Carbon nanofibers (CNF) with a 1D porous structure offer promising support to encapsulate transition‐metal oxides in energy storage/conversion relying on their high specific surface area and pore volume. Here, the preparation of NiO nanoparticle‐dispersed electrospun N‐doped porous CNF (NiO/PCNF) and as free‐standing film electrode for high‐performance electrochemical supercapacitors is reported. Polyacrylonitrile and nickel acetylacetone are selected as precursors of CNF and Ni sources, respectively. Dicyandiamide not only improves the specific surface area and pore volume, but also increases the N‐doping level of PCNF. Benefiting from the synergistic effect between NiO nanoparticles (NPs) and PCNF, the prepared free‐standing NiO/PCNF electrodes show a high specific capacitance of 850 F g?1 at a current density of 1 A g?1 in 6 m KOH aqueous solution, good rate capability, as well as excellent long‐term cycling stability. Moreover, NiO NPs dispersed in PCNF and large specific surface area provide many electroactive sites, leading to high CO2 uptake, and high‐efficiency CO2 electroreduction. The synthesis strategy in this study provides a new insight into the design and fabrication of promising multifunctional materials for high‐performance supercapacitors and CO2 electroreduction.  相似文献   

6.
分别以聚乙烯醇(PVA)/热固性酚醛树脂(PF)/碳酸钾(K2CO3)和PVA/PF的水溶液为纺丝原液,通过静电纺丝、固化和炭化处理制得多孔纳米炭纤维。利用扫描电子显微镜(SEM)、低温氮气吸脱附等对所制多孔炭纳米纤维进行表征,并将所制多孔炭纤维作为模拟电容器电极材料,利用循环伏安和恒电流充放电进行了电化学性能测试。结果表明:纺丝原液中加入K2CO3后所制多孔纳米炭纤维的比表面积增大(从564 m.2g-1提高到668 m.2g-1),电化学性能提高(在电流密度为0.2 A.g-1的情况下,比电容由165 F.g-1提高到178 F.g-1)。  相似文献   

7.
Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass.In this study,we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hybrid nanocellulose films as electrode materials for supercapacitors.The long cellulose nanofibrils (CNFs) formed a macroporous framework,and the short cellulose nanocrystals were assembled around the CNF framework and generated micro/mesopores.This two-level hierarchical porous structure was successfully preserved during carbonization because of a thin atomic layer deposited (ALD) Al2O3 conformal coating,which effectively prevented the aggregation of nanocellulose.These carbonized,partially graphitized nanocellulose fibers were interconnected,forming an integrated and highly conductive network with a large specific surface area of 1,244 m2·g-1.The two-level hierarchical porous structure facilitated fast ion transport in the film.When tested as an electrode material with a high mass loading of 4 mg·cm-2 for supercapacitors,the hierarchical porous carbon film derived from hybrid nanocellulose exhibited a specific capacitance of 170 F.g-1and extraordinary performance at high current densities.Even at a very high current of 50 A·g-1,it retained 65% of its original specific capacitance,which makes it a promising electrode material for high-power applications.  相似文献   

8.
Reduced graphene oxide (rGO) nanosheets (NSs) decorated with TiO2 nanoparticles (NPs) were bound to activated carbon fibers (ACF) forming three-dimensional (3D) macroscopic composites with nanoscale building blocks by a one-pot hydrothermal self-assembly method. The integration of adsorption capacity enhanced by rGO NSs and photocatalytic activity introduced by TiO2 NPs in the resultant ACF–rGO–TiO2 composite was demonstrated via the proof-of-concept application of disposing organic dyes, i.e. Rhodamine B (RhB). Moreover, the photocatalytic degradation of laden RhB dye can effectively make ACF–rGO–TiO2 composites regenerate the adsorption capacity, promoting two practical values: (1) eliminating rather than removing dye pollutants and (2) recycling rather than consuming adsorbents. The synergistic functionalization highlights the potential of 3D ACF–rGO–TiO2 composite as a promising massive adsorbent with photocatalytic activities for environment purifications.  相似文献   

9.
It has been found that the formation of TiN whiskers by reaction of molten alkali metal (sodium, potassium) cyanide with TiN powder or with TiO2 is effected by the presence of alkali metal oxides. This has led to the successful use of reactions of molten cyanide with several sodium and potassium titanates for the formation of TiN whiskers.  相似文献   

10.

In this reported study, novel multiple dimensional ZIF-67/rGO/NiPc composite materials were prepared for supercapacitors. The electrochemical test showed that the ZIF-67/rGO/NiPc electrode achieved a remarkable specific capacitance of 860 F g?1 at a current density of 1 A g?1, which was superior to that of the rGO/NiPc and ZIF-67/rGO electrodes. An asymmetric supercapacitor based on ZIF-67/rGO/NiPc//activated carbon exhibited a high specific capacitance of 200.67 F g?1 and an extraordinary energy density of 62.7 Wh kg?1 at a corresponding power density of 750 W kg?1. In addition, the device demonstrated 94.6% capacitance retention after 5000 cycles. The assembled asymmetric supercapacitors could easily powered a green light-emitting diode. This work revealed a promising research route for the rational construction of multiple dimensioned high-performance electrodes materials for use in new energy storage devices.

  相似文献   

11.
We demonstrate the fabrication of wearable supercapacitor electrodes.The electrodes were applied to wearable fabric by supersonically spraying the fabric with reduced graphene oxide(rGO)followed by decoration with iron oxide(Fe2O3)nanoparticles via a hydrothermal process.The integration of iron oxide with rGO flakes on wearable fabric demonstrates immense potential for applications in high-energy-storage devices.The synergetic impact of the intermingled rGO flakes and Fe2O3 nanoparticles enhances the charge transport within the composite electrode,ultimately improving the overall electrochemical performance.Taking advantage of the porous nature of the fabric,electrolyte diffusion into the active rGO and Fe2O3 materials was significantly enhanced and subsequently increased the electrochemical interfacial activities.The effect of the Fe2O3 concentration on the overall electrochemical performance was investigated.The optimal composition yields a specific capacitance of 360 F g-1 at a current density of 1A g-1 with a capacitance retention rate of 89%after 8500 galvanostatic cycles,confirming the long-term stability of the Fe2O3/rGO fabric electrode.  相似文献   

12.
The controllable construction of two-dimensional(2D)metal–organic framework(MOF)nanosheets with favorable electrochemical performances is greatly challenging for energy storage.Here,we design an in situ induced growth strategy to construct the ultrathin carboxylated carbon nanotubes(C-CNTs)interpenetrated nickel MOF(Ni-MOF/C-CNTs)nanosheets.The deliberate thickness and specific surface area of novel 2D hybrid nanosheets can be effectively tuned via finely controlling C-CNTs involvement.Due to the unique microstructure,the integrated 2D hybrid nanosheets are endowed with plentiful electroactive sites to promote the electrochemical performances greatly.The prepared Ni-MOF/C-CNTs nanosheets exhibit superior specific capacity of 680 C g^−1 at 1 A g^−1 and good capacity retention.The assembled hybrid device demonstrated the maximum energy density of 44.4 Wh kg^−1 at a power density of 440 W kg^−1.Our novel strategy to construct ultrathin 2D MOF with unique properties can be extended to synthesize various MOF-based functional materials for diverse applications.  相似文献   

13.
Conversion-type anode materials with a high charge storage capability generally su er from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages(Co9S8@NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g^-1 at 100 mA g^-1 with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co9S8 nanoparticles is bu ered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co9S8@NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co9S8@NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg^-1 at power densities of 200 and 10,000 W kg^-1, respectively.  相似文献   

14.
The recycling of solid plastic waste has been a major challenge to the sustainable development of today's society. Herein, one of the commonly wasted plastic raw materials, linear low-density polyethylene (LLDPE), is used as the carbon source to explore high-value porous carbon composites for microwave absorption applications. The carbon composites are simply obtained through the delicate carbonization of LLDPE, followed by in situ introducing Ni nanoparticles (NPs) into the carbon monolith. The porous carbon composites show a minimum reflection loss (RLmin) value of −52.2 dB at 1.65 mm, which demonstrates excellent microwave absorption properties of the wasted plastic-derived carbon materials. In addition, the anticorrosion performance of the carbon composites is evaluated by electrochemical technique. Above all, the current study provides a new idea and simple strategy for processing wasted plastics to high-value porous carbon materials.  相似文献   

15.
碳纳米管在超级电容器中的应用研究进展   总被引:6,自引:4,他引:6  
吴锋  徐斌 《新型炭材料》2006,21(2):176-184
超级电容器是近年来发展起来的一种新型储能装置。碳纳米管由于具有独特的中空结构,良好的导电性和高的比表面积,被认为是超级电容器理想的电极材料之一,引起了广泛的关注。通过介绍碳纳米管在超级电容器中的应用研究进展,评述了碳纳米管、活化碳纳米管、碳纳米管/金属氧化物复合物以及碳纳米管/导电聚合物复合物用做超级电容器电极材料的特点和性能。认为单纯的碳纳米管由于比表面积小,比容量偏低。化学活化可以显著提高碳纳米管的比表面积,增大其比电容。将碳纳米管与准电容材料金属氧化物或导电聚合物复合。可以发挥各自的优势,从而得到低成本、高性能的复合电极材料,将是今后发展的一个方向。  相似文献   

16.
Nitrogen-doped porous carbon materials (NPCs) have been successfully fabricated by a simple one-step pyrolysis of diethylenetriaminepentaacetic acid (DTPA) in the presence of KOH. The as-synthesized NPCs displayed a high specific surface area (3214?m2?g?1) and a well-defined porous structure when the annealing temperature reached 800?°C, which showed superior electrochemical performance as supercapacitor electrode materials. Electrochemical tests showed that the NPCs achieved an impressive specific capacitance of 323?F?g?1 at a current density of 0.5?A?g?1 in 6?M KOH aqueous solution and an outstanding cycle stability, negligible specific capacitance decay after 5000 cycles at 10?A?g?1. This strategy offered a new insight into the preparation of novel carbon materials for the advanced energy storage devices, such as supercapacitors, fuel cells and lithium ion batteries.  相似文献   

17.
Hybrid supercapacitors generally show high power and long life spans but inferior energy densities, which are mainly caused by carbon negative electrodes with low specific capacitances. To improve the energy densities, the traditional methods include optimizing pore structures and modifying pseudocapacitive groups on the carbon materials. Here, another promising way is suggested, which has no adverse effects to the carbon materials, that is, constructing electron‐rich regions on the electrode surfaces for absorbing cations as much as possible. For this aim, a series of hierarchical porous carbon materials are produced by calcinating carbon dots–hydrogel composites, which have controllable surface states including electron‐rich regions. The optimal sample is employed as the negative electrode to fabricate hybrid supercapacitors, which show remarkable specific energy densities (up to 62.8–90.1 Wh kg?1) in different systems.  相似文献   

18.
煤炭作为一种来源广泛的非金属矿物,是制备大量多孔碳的理想原料。本文以1/3焦煤为原料,NaOH和KOH为活化剂,制备了多孔碳,并研究了硫/多孔碳复合正极材料的电化学性能。结果表明:采用NaOH和KOH单独活化时制备的多孔碳比表面积很大,分别为1 649 m2/g和1 867 m2/g,而采用NaOH和KOH混合活化制备的多孔碳比表面积大幅度下降,当NaOH与KOH质量比为1:1活化时多孔碳的比表面积最小,为290 m2/g。电化学测试表明,NaOH与KOH质量比为1:1混合活化的硫/多孔碳正极材料的电性能优于NaOH和KOH单独活化的硫/多孔碳正极材料,0.2 C下首次放电比容量为790 mA·h/g,库仑效率为93.16%,100次循环后放电比容量为740 mA·h/g。还分析讨论了煤基多孔碳孔径分布对电化学性能的影响。   相似文献   

19.
选用合适的软模板,通过简便的一步溶剂热法成功制备了NiS2/三维多孔石墨烯(3D rGO)复合材料。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:制备的NiS2/3D rGO复合材料存在石墨烯三维堆叠的孔道结构,且具备较大的比表面积,为57.51 m2g-1。电化学测试表明,在1 Ag-1的电流密度下NiS2/3D rGO复合材料的比电容高达1 116.7 Fg-1,而且当电流密度增加到5 Ag-1时NiS2/3D rGO复合材料的比电容为832.2 Fg-1,比电容保持率为1 Ag-1时的74.5%。在4 Ag-1电流密度下,经过1 000次循环后,NiS2/3D rGO复合材料的比电容仍能保持91.2%。因此,NiS2/3D rGO复合材料可作为一种理想的超级电容器电极材料。   相似文献   

20.
A breakthrough in technologies having “green” and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high‐performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon‐based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号