首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 866 毫秒
1.
机械合金化(Mg+Mg2 Ni)+TiO2合金的储氢性能   总被引:1,自引:0,他引:1  
用机械合金化法合成了(Mg Mg2Ni) TiO2储氢合金,借助XRD分析了TiO2的加入对合金的物相结构的影响,SEM考察了合金的形貌.TiO2在合金的吸放氢过程中起到很好的催化作用,降低合金放氢温度并且提高合金储氢量,(Mg Mg2Ni) 10wt%TiO2合金在573K下的储氢量是5.84wt%.  相似文献   

2.
叶小球  桑革 《材料导报》2006,20(10):132-134
采用机械合金化方法合成了Mg-54.7%Ni-x%Pd(x=0、3、10,质量百分比)贮氢材料.通过X射线衍射分析(XRD)和贮氢性能测试,研究了Pd含量对Mg-Ni合金相形成及贮氢性能的影响.XRD分析表明,在0.30MPa的氩气气氛下球磨30h后,粉末没有形成合金相;但在523K吸氢时,Mg-54.7%Ni-x%Pd(x=0,3)与氢气反应均生成了大量的Mg2NiH4,而Mg-54.7%Ni-10%Pd的氢化物中大部分为MgH2,只形成了少量的Mg2NiH4.贮氢性能测试结果表明,所制备的材料在473K无需活化即可吸氢;同Mg-54.7%Ni-x%Pd(x=0,10)相比,Mg-54.7%Ni-3%Pd吸放氢速度最快,可逆贮氢容量最大(2.82%,质量百分比).  相似文献   

3.
刘静  李谦 《功能材料》2013,44(3):380-383
以磁场辅助烧结法(MASS)制备的La0.67Mg0.33Ni3合金为对象,采用XRD、SEM及定容法研究了合金的相结构、微观形貌、活化能力及吸放氢动力学性能。结果显示,MASS制备的合金主相为PuNi3型结构的(La,Mg)Ni3。合金颗粒表面粗糙,呈现多孔结构。1T磁场下合成的合金经过3个循环就可完全活化,最大吸氢量达到1.47%(质量分数)。动力学测试表明,该合金在室温、1MPa氢气下50s内吸氢达到饱和;在333K、0.001MPa氢气下400s内可完成放氢,具有最佳的动力学性能,但合金可逆放氢量较低。  相似文献   

4.
采用中频感应炉冶炼了添加少量Y和Cu的Mg 2Ni型储氢合金,利用X射线衍射仪、扫描电子显微镜、能谱分析仪、透射电子显微镜对合金不同状态下的物相结构与显微组织进行测试,借助基于Sieverts法的吸放氢设备和差示扫描量热仪测试合金的放氢性能,研究合金在等温与连续加热条件下的放氢过程和放氢活化能,并讨论相应的放氢机制。结果表明:铸态合金呈片层状组织,其主相为Mg 2Ni,YMgNi 4,并含有少量Mg;在前6次放氢中,每次达到90%最大放氢量所用时间分别为446,418,360,354,342 s和336 s;对等温放氢曲线拟合的结果表明:合金脱氢过程是以随机成核和随后生长的机制完成;等温放氢时的活化能E a=67.6 kJ/mol,而连续升温时的放氢活化能E a=69.5 kJ/mol;同时发现,505 K和512 K为Mg 2NiH 4相的晶型转变点,且Mg 2NiH 4比MgH 2先行放氢。  相似文献   

5.
用X射线衍射方法(XRD)研究了Mg3Pr合金吸放氢前后的结构变化。Mg3Pr合金在吸/放氢过程中的压力.组成.等温曲线(PcI)和吸氢动力学曲线表明合金能在室温下吸氢,并且具有良好的吸氢动力学特性,能在4min之内达到饱和吸氢量的90%;其最大吸氢量分别为2.57%(质量分数)。Mg3Pr合金的吸氢动力学曲线可用Avrami-Erofeev方程拟合,说明吸氢过程符合形核长大机制。同时,也计算了Mg3Pr-H氢化反应的熵和焓。  相似文献   

6.
为了改善Mg2Ni型合金气态及电化学贮氢动力学性能,用La部分替代合金中的Ni,用快淬技术制备了Mg2-xLaxNi(x=0、0.2、0.4、0.6)合金,用XRD、SEM、HRTEM分析了铸态及快淬态合金的微观结构;用自动控制的Sieverts装置测试了合金的气态贮氢动力学性能,用程控电池测试仪测试了合金的电化学贮氢动力学。结果发现快淬二元Mg2Ni合金具有典型的纳米晶结构,而快淬La替代合金明显地显示具有非晶结构,表明La替代Mg提高Mg2Ni型合金的非晶形成能力。La替代Mg明显地改变Mg2Ni型合金的相组成。当x≤0.2时,La替代Mg不改变合金的主相Mg2Ni,但出现少量的LaMg3及La2Mg17相。而当La替代量x=0.4时,合金的主相改变为(La,Mg)Ni3+LaMg3。合金的气态及电化学吸放氢动力学对La含量及快淬工艺敏感,La替代使合金的吸氢动力学降低,但适量的La替代Mg可以明显改善合金的放氢动力学及高倍率放电能力。La替代对合金贮氢动力学性能的影响与合金的制备工艺密切相关,表明合金的组织结构是影响其贮氢动力学的重要因素。  相似文献   

7.
张健 《材料导报》2011,25(10):84-87,91
基于机械反应球磨技术在氢气气氛下成功合成了Mg2NiH4及Cu掺杂Mg2NiH4储氢体系,并采用XRD、SEM、DSC及TGA检测手段对其组织结构与解氢性能进行表征。结果显示,适当提高氢压、延长球磨时间均有助于2Mg-Ni混合物氢化反应的完全化及产物结构的纳米化;Cu掺杂可进一步加快混合物的氢化反应速率,但其产物结构的团聚现象却因MgCu2相的出现而趋于严重;综合热分析表明Cu掺杂不仅降低了Mg2NiH4的解氢温度,还加快了体系的解氢速率;研究结果很好地证实Cu元素是改善Mg2NiH4储氢体系解氢性能最理想的合金化元素之一。  相似文献   

8.
徐光亮  刘文斌  肖定全 《功能材料》2006,37(1):95-97,101
借助于XRD、TG-DSC和SEM等技术研究了掺钛对氢化燃烧合成镁镍储氢合金的合成条件及合金性能的影响.结果表明:掺钛使Mg2NiH4的合成温度有一定的提高,600℃时才能大量生成Mg2NiH4;氢压的提高有利于Mg2NiH4的形成,而过高的合成温度和过长的保温时间将不利于Mg2NiH4的形成;钛的掺入使Mg2NiH4的晶胞有一定的增大;掺钛的Mg2NiH4放氢分解温度为259.8℃,比未掺钛的降低了120℃左右;掺钛试样的总放氢量为2.43%;掺钛试样在300℃、0.1MPa下的吸放氢时间为6min,活化可适当提高吸放氢量.  相似文献   

9.
碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究   总被引:1,自引:0,他引:1  
以改性无烟煤为助磨剂,在氢气气氛下球磨制备了具有纳米结构的镁铝合金储氢材料,通过SEM,XRD,TPD等手段对比研究了球磨吸氢材料及静态再吸氢材料的晶相结构及放氢动力学性能.结果表明:改性无烟煤具有良好的助磨作用,经5.5h球磨,材料平均粒度可达74nm;镁铝合金经反应球磨后,其中的Mg转化成了β-MgH2和γ-MgH2,放氢峰温低于300℃;静态再吸氢后,MgH2全部以β-MgH2存在,且晶体粒度增长60%,Mg17Al12分解为单质Mg和Al,其中单质Al使储氢材料放氢活化能降低,用Kissinger方程计算出球磨储氢和再吸氢材料的放氢一级表观活化能分别为107.3kJ/mol和67.1kJ/mol.  相似文献   

10.
将氨气等离子体法制备的50nm左右的Mg3N2纳米颗粒与氨气反应,成功合成出大小约为80nm,球壳厚度约为10nm的Mg(NH2)2纳米空心球。利用Mg(NH2)2纳米空心球制备的Mg(NH2)2+2LiH储氢体系,比普通Mg(NH2)2+2LiH具有更低的放氢温度,放氢活化能从149.1kJ/mol降低到了117.6kJ/mol。对该体系添加纳米级的Ni作为催化剂,放氢活化能进一步降低为108.0kJ/mol。反应后生成物颗粒大小取决于反应前Mg(NH2)2颗粒的大小。通过对放氢性能的比较,讨论了影响Mg(NH2)2+2LiH体系放氢性质的因素和决速步骤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号