首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Fano resonances of a metal nanorod array with a symmetry breaking wedge and gain medium filling have been explored using the finite-difference time-domain method. Results show that a periodic symmetry breaking nanorod array supports Fano resonance due to the interaction between a hybridized dipolar plasmon mode of the nanorod and a narrower quadrupolar mode of the slice. By a tiny increase of the imaginary part of the dielectric constant of the gain medium, the Ohmic loss can be counteracted, and Fano resonance dip gets deeper significantly. Additionally, the modulation depth can be improved by changing the real part of the gain medium dielectric constant. The results found are useful for further develop of the devices on the basis of the Fano resonance and its modulation.  相似文献   

2.
A metallic nanostructure consisting of a disk inside a thin ring supports superradiant and very narrow subradiant modes. Symmetry breaking in this structure enables a coupling between plasmon modes of differing multipolar order, resulting in a tunable Fano resonance. The LSPR sensitivities of the subradiant and Fano resonances are predicted to be among the largest yet for individual nanostructures.  相似文献   

3.
Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line‐shape magnetic Fano resonance has significant potential applications in low‐loss sensing and may serves as suitable elementary building blocks for optical metamaterials.  相似文献   

4.
Plasmonic clusters can support Fano resonances, where the line shape characteristics are controlled by cluster geometry. Here we show that clusters with a hemicircular central disk surrounded by a circular ring of closely spaced, coupled nanodisks yield Fano-like and non-Fano-like spectra for orthogonal incident polarization orientations. When this structure is incorporated into an uniquely broadband, liquid crystal device geometry, the entire Fano resonance spectrum can be switched on and off in a voltage-dependent manner. A reversible transition between the Fano-like and non-Fano-like spectra is induced by relatively low (~6 V) applied voltages, resulting in a complete on/off switching of the transparency window.  相似文献   

5.
Fano lineshapes are fundamental spectroscopic signatures that quantitatively characterize the structural and dynamic properties of physical objects, from nuclei to three-dimensional solids and liquids. The study of cascades of Fano resonances is a fresh approach to the classical problem that greatly expands our knowledge and the scope of practical applications. Here it is demonstrated that in solid state physics cascades of Fano resonance can be considered as a general property of light scattering by dielectric particles with the Mie and Fabry-Perot manifold of narrow photonic eigenmodes. A general picture of Fano resonance cascades in the spectra of all basic elementary scatterers (spheres, cylinders, rings, split rings, rectangular cuboids) is presented. For rings, split rings, and cuboids, the scattering spectrum is divided into separate spectral regions, which begin with a broad transverse resonance of the Lorentz-type or Fano-type lineshape, genetically related to the modes of the disk that generates the ring, and continue with a gallery of longitudinal modes with exponentially increasing Q factors. The alternation of a cascade of transverse modes in a strict sequence of Lorentz-Fano-Lorentz-Fano-… is shown theoretically, as well as experimentally in the case of a ring. This picture opens the door to new fundamental phenomena and extended functionality of dielectric elementary scatterers due to the highly asymmetric controllable shape of the Fano line, periodically repeating in the scattering spectrum.  相似文献   

6.
A local plasmon resonance on a metal wedge is studied by using the Meixner approach [J. Meixner, IEEE Trans. Antennas Propag.AP-20, 442 (1972)]. It is found that the singular field behavior of a local plasmon resonance as a function of the distance from the edge of the wedge is sensitive to the wavelength and wedge angle, and ranges from a dramatic increase in amplitude close to its theoretical limit to pure oscillatory behavior with only minor amplitude variation. Field singularities for gold, silver, and aluminum wedges are calculated. It is shown that, unlike an ideal-conductor wedge, the real part of the power index of the electric field singularity does not decrease monotonically as a function of the wedge angle, but has a minimum for some angle depending on the wavelength and material parameters. If the dielectric surrounding the wedge has a positive permittivity equal to the absolute value of that of the metal, and hence satisfies the plasmon resonance condition, then the electric field has a peculiar behavior for a wedge whose shape is close to the flat surface.  相似文献   

7.
A Fano resonance is observed in highly symmetric nanostructures comprising Au nanosphere cores and dielectric shells. It arises from the interference between the narrow plasmon resonance of the Au nanosphere core and the broad scattering background of the dielectric shell. The Fano resonance behavior is dependent on the gap distance between the core and shell and the shell material.  相似文献   

8.
By varying the relative dimensions of the central and peripheral disks of a plasmonic nanocluster, the depth of its Fano resonance can be systematically modified; spectral windows where the scattering cross section of the nanocluster is negligible can be obtained. In contrast, electron-beam excitation of the plasmon modes at specific locations within the nanocluster yields cathodoluminescence spectra with no Fano resonance. By examining the selection rules for plasmon excitation in the context of a coupled oscillator picture, we provide an intuitive explanation of this behavior based on the plasmon modes observed for optical and electron-beam excitation in this family of nanostructures.  相似文献   

9.
Strong spatial confinement and highly reduced dielectric screening provide monolayer transition metal dichalcogenides with strong many‐body effects, thereby possessing optically forbidden excitonic states (i.e., dark excitons) at room temperature. Herein, the interaction of surface plasmons with dark excitons in hybrid systems consisting of stacked gold nanotriangles and monolayer WS2 is explored. A narrow Fano resonance is observed when the hybrid system is surrounded by water, and the narrowing of the spectral Fano linewidth is attributed to the plasmon‐enhanced decay of dark KK excitons. These results reveal that dark excitons in monolayer WS2 can strongly modify Fano resonances in hybrid plasmon–exciton systems and can be harnessed for novel optical sensors and active nanophotonic devices.  相似文献   

10.
Quadrupole plasmon and (octupolar) Fano resonances are induced in lithographically fabricated theta-shaped ring-rod gold nanostructures. The optical response is characterized by measuring the light scattered by individual nanostructures. When the nanorod is brought within 3 nm of the ring wall, a weak quadrupolar resonance is observed due to capacitive coupling, and when a necklike conductive bridge links the nanorod to the nanoring the optical response changes dramatically bringing the quadrupolar resonance into prominence and creating an octupolar Fano resonance. The Fano resonance is observed due to the destructive interference of the octupolar resonance with the overlapping and broadened dipolar resonance. The quadrupolar and Fano resonances are further enhanced by capacitive coupling (near-field interaction) that is favored by the theta-shaped arrangement. The interpretation of the data is supported by FDTD simulation.  相似文献   

11.
ABSTRACT

Nonlinear signal even from a single molecule becomes visible at hot spots of plasmonic nanoparticles. In these structures, Fano resonances can control the nonlinear response in two ways. (i) A linear Fano resonance can enhance the hot spot field, resulting enhanced nonlinear signal. (ii) A nonlinear Fano resonance can enhance the nonlinear signal without enhancing the hot spot. In this study, we compare the enhancement of second harmonic signal at the steady-state obtained via these two methods. Since we are interested in the steady-state signal, we adapt a linear enhancement which works at the steady-state. This is different than the dark-hot resonances that appear in the transparency window due to enhanced plasmon lifetime.  相似文献   

12.
Zhang S  Bao K  Halas NJ  Xu H  Nordlander P 《Nano letters》2011,11(4):1657-1663
Symmetry-breaking introduced by an adjacent semi-infinite dielectric can introduce coupling and hybridization of the plasmon modes of a metallic nanostructure. This effect is particularly large for entities with a large contact area adjacent to the dielectric. For a nanocube, a nearby dielectric mediates an interaction between bright dipolar and dark quadrupolar modes, resulting in bonding and antibonding hybridized modes. The Fano resonance that dominates the scattering spectrum arises from the interference of these modes. This analysis provides a strategy for optimizing the sensitivity of nanostructures, whether chemically synthesized or grown by deposition methods, as high-performance localized surface plasmon resonance sensors.  相似文献   

13.
Tunable Fano resonances and plasmon–exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS2 as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS2 and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon–exciton coupling with Rabi splitting energies of 100–340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon–exciton interactions, the proposed WS2–AuNT hybrids can open new pathways to develop active nanophotonic devices.  相似文献   

14.
Grazing incidence ion sputtering was used to create shallow ripple patterns on a Ag(001) surface. The anisotropic plasmon resonance associated with this ripple pattern can be sensitively measured with Reflection Anisotropy Spectroscopy. A slight red shift of the resonance energy is observed with increasing ion fluence. The observed resonance feature is described well with a skewed Lorentzian line shape. This line shape is the small roughness length scale limit of the Rayleigh Rice perturbation approach. The width of this line shape is directly related to imaginary part of the dielectric function, which shows a roughness induced reduction of the electron mean free path. The observed change in resonance energy and strength with ion fluence is discussed.  相似文献   

15.
Nanohole arrays or individual nanohole oligomers in metallic films have attracted intense attention due to their unique optical properties such as extraordinary optical transmission or Fano resonance. However, the nanohole oligomer array still remains largely unexplored. In this work, we numerically investigate the heptamer-hole arrays in an optically thin silver film, which can support double Fano-type resonances in the transmission spectra. The two Fano-type transmissions arise from the interference between the non-resonant direct transmission through holes and the resonant indirect scatterings based on the excitations of surface plasmons polaritons (SPPs, set up by the array periodicity) and a sub-radiant localized surface plasmon resonance (LSPR, arising from the anti-bonding hybridization between the central and the surrounding holes). Because of their different physical mechanisms, the two Fano resonances can be tuned independently. In addition, the LSPR-related Fano resonance shows an ultra-high sensitivity to surrounding dielectric medium with a figure of merit of 25 due to its sub-radiant feature, far larger than the SPP-related Fano resonance, offering tremendous potentials for plasmonic biosensors.  相似文献   

16.
Localized surface plasmon resonance spectroscopy of single silver nanocubes   总被引:1,自引:0,他引:1  
In this work, we use dark-field microscopy to observe a new plasmon resonance effect for a single silver nanocube in which the plasmon line shape has two distinct peaks when the particles are located on a glass substrate. The dependence of the resonance on nanocube size and shape is characterized, and it is found that the bluer peak has a higher figure of merit for chemical sensing applications than that for other particle shapes that have been studied previously. Comparison of the measured results with finite difference time domain (FDTD) electrodynamics calculations enables us to confirm the accuracy of our spectral assignments.  相似文献   

17.
Silver coating gold nanorods reduces the ensemble plasmon line width by changing the relation connecting particle shape and plasmon resonance wavelength. This change, we term "plasmonic focusing", leads to less variation of resonance wavelengths for the same particle size distribution. We also find smaller single particle linewidth comparing resonances at the same wavelength but show that this does not contribute to the ensemble linewidth narrowing.  相似文献   

18.
An optofluidic platform for real‐time monitoring of live cell secretory activities is constructed via Fano resonance in a gold nanoslit array. Large‐area and highly sensitive gold nanoslits with a period of 500 nm are fabricated on polycarbonate films using the thermal‐annealed template‐stripping method. The coupling between gap plasmon resonance in the slits and surface plasmon polariton Bloch waves forms a sharp Fano resonance with intensity sensitivity greater than 11 000% per refractive index unit. The nanoslit array is integrated with a cell‐trapping microfluidic device to monitor dynamic secretion of matrix metalloproteinase 9 (MMP‐9) from human acute monocytic leukemia cells in situ. Upon continuous lipopolysaccharide (LPS) stimulation, MMP‐9 secretion is detected within 2 h due to ultrahigh surface sensitivity and close proximity of the sensor to the target cells. In addition to the advantage of detecting early cell responses, the sensor also allows interrogation of cell secretion dynamics. Furthermore, the average secretion per cell measured using our system well matches previous reports while it requires orders of magnitude less cells. The optofluidic platform may find applications in fundamental studies of cell functions and diagnostics based on secretion signals.  相似文献   

19.
Gold nanorings are attractive as plasmonic metal nanocrystals because they have a hollow inner cavity. Their enhanced electric field inside the ring cavity is accessible, which is highly desirable for assembling with other optical components and studying their plasmon‐coupling behaviors. However, the lack of robust methods for synthesizing size‐controllable and uniform Au nanorings severely impedes the study of their attractive plasmonic properties and plasmon‐driven applications. Herein, an improved wet‐chemistry method is reported for the synthesis of monodisperse colloidal Au nanorings. Using circular Au nanodisks with different thicknesses and diameters as templates, Au nanorings are synthesized with thicknesses varied from ≈30 to ≈50 nm and cavity sizes varied from ≈90 to ≈40 nm. The produced Au nanorings are assembled with colloidal Au nanospheres to yield Au nanoring–nanosphere heterodimers in sphere‐in‐ring and sphere‐on‐ring configurations on substrates. The sphere‐in‐ring heterodimers exhibit the interesting feature of plasmonic Fano resonance upon the excitation of the dark quadrupolar plasmon mode of the Au nanorings. The open cavity in a nanoring holds a great promise for studying plasmon‐coupled systems, which will facilitate the construction of advanced metamaterials and high‐performance Fano‐based devices.  相似文献   

20.
We present a theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism. This theory is applicable to the general scheme of a single optical resonance coupled with multiple input and output ports. We show that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations. In particular, for a two-port symmetric structure, Fano-resonant line shape can be derived by using only these symmetry considerations. We validate the analysis by comparing the theoretical predictions with three-dimensional finite-difference time-domain simulations of guided resonance in photonic crystal slabs. Such a theory may prove to be useful for response-function synthesis in filter and sensor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号