首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
通过炮弹静爆试验,对快速拼装式防爆墙的消波性能进行了研究。对比了不同比例爆距下防爆墙前后的冲击波超压峰值,提出了反映防爆墙消波能力的超压消波效应系数,并结合试验数据分析了比例爆距、比例墙高和墙后比例距离对消波性能的影响。结果表明:作用于防爆墙迎爆面的反射超压一般比墙后的最大绕射超压大一个数量级,比例爆距和墙后测点距离对绕射超压影响较大;有防爆墙时墙后冲击波超压明显低于无墙时自由场超压,防爆墙的消波效应可达50%以上;比例爆距和比例墙高共同影响防爆墙的消波性能,随着墙后比例距离的增大,消波效应系数逐渐减小。  相似文献   

2.
为研究快速拼装式防爆墙墙后超压分布规律及影响因素,基于2D映射3D网格建模技术,采用AUTODYN有限元软件分别对TNT当量为6.82 kg,爆高1 m、爆距3 m、墙厚0.5 m,墙体高度为1.5 m、2 m、2.5 m的计算模型和比例爆距分别1.58 m/kg~(1/3)、1.28 m/kg~(1/3)、1.05 m/kg~(1/3)的计算模型以及比例爆距为1.05 m/kg~(1/3),爆高1 m、墙高2 m、墙厚0.5 m,爆距为2 m、3 m、4 m的计算模型进行了模拟,分析了墙体高度、比例爆距和炸药位置对墙后超压分布的影响。结果表明:墙体高度增加将显著增强防爆墙消波性能,墙体高度在1.5~2.5 m范围内变化时,墙后消波系数变化较大;随着比例爆距的减小,墙后较远处消波系数有所增大;随着测点高度和爆高增大,测点处受到的防爆墙保护效应将减小。综合考虑以上因素对墙后测点超压的影响,拟合出了计算墙后超压大小的公式,计算结果与数值模拟结果能较好的吻合。  相似文献   

3.
为研究爆炸空气冲击波作用于柔性防爆墙后发生的透射和绕射现象及规律,采用数值模拟方法计算了防爆墙在5、10、15和20kg四种药量TNT炸药爆炸冲击波作用下墙后压力流场的变化,分析了墙后发生的透射和绕射现象,比较了压力波形的变化特点,得到了墙后压力场变化分布规律。计算结果表明,柔性墙背后的压力存在两个主要峰值,分别为透射压力峰值和绕射压力峰值。透射压力峰值由柔性墙体变形运动引起,并与墙体变形速率有关;绕射压力峰值由冲击波在墙顶绕射传播引起。透射压力与绕射压力的分布与变化规律不同,需区别对待分析。  相似文献   

4.
为了检验不同构筑方式的快速拼装式防爆墙组合防护性能,利用皮卡车承载602 kg TNT制作的汽车炸弹进行实爆来模拟恐怖袭击。试验表明:汽车炸弹爆炸对墙后目标的破坏作用主要是由于顶部绕射的冲击波造成的,其消波性能的主要影响因素是墙体高度,且当墙体布设高度大于2 m时,防爆墙的消波效应可达81%以上,同时,在墙后1~2.5倍墙高处增设一道消波墙,可提高防爆墙的消波效应;防爆墙对墙后活体目标具有较好的防护能力,能有效抵抗汽车炸弹的袭击损伤。  相似文献   

5.
为了检验不同构筑方式的快速拼装式防爆墙组合防护性能,利用皮卡车承载602 kg TNT制作的汽车炸弹进行实爆来模拟恐怖袭击。试验表明:汽车炸弹爆炸对墙后目标的破坏作用主要是由于顶部绕射的冲击波造成的,其消波性能的主要影响因素是墙体高度,且当墙体布设高度大于2 m时,防爆墙的消波效应可达81%以上,同时,在墙后1~2.5倍墙高处增设一道消波墙,可提高防爆墙的消波效应;防爆墙对墙后活体目标具有较好的防护能力,能有效抵抗汽车炸弹的袭击损伤。  相似文献   

6.
通过不同炸药量、不同爆炸距离、不同起爆深度的水中爆炸模型实验,研究了浅水爆炸条件下高桩钢管柱表面压力特征和空间分布规律,分析了比例爆距对冲击波峰值及空间分布影响,给出了钢管柱表面冲击波反射系数、绕射系数和抗爆设计中实际作用冲击波的工程算法。研究结果表明:水中爆炸作用下,反射和绕射冲击波近似同时作用在钢管柱表面,峰值沿柱身高度方向非均匀分;冲击波受水面影响程度相对较小,二次气泡脉动受水面影响程度较大;反射和绕射冲击波峰值均随炸药量增加、作用距离减小而增加。比例爆距相同,反射冲击波峰值相同,但炸药量小、爆炸距离近的实验工况绕射冲击波峰值相对较小;钢管柱表面冲击波反射系数和绕射系数随比例爆距增加而减小。比例爆距≥1.71时,钢管柱实际作用冲击波峰值可近似按自由场冲击波峰值的1.37倍计算。  相似文献   

7.
异型防爆墙抗空气冲击波的数值模拟   总被引:1,自引:0,他引:1  
马云玲  赵丽君  聂建新 《爆破》2010,27(1):26-30
通过对比广泛认可的空气冲击波计算经验公式,验证了运用动力有限元软件AUTODYN 2D进行数值模拟计算冲击波问题的可行性与准确性;运用AUTODYN 2D计算了4种不同形式防爆墙在相同爆源距时各防爆墙的抗冲击波能力,其次计算了随爆源距的减小各种防爆墙的冲击波超压峰值减弱率均值,并对比分析了其变化趋势,得出4种防爆墙中(b)、(c)、(d)型防爆墙的冲击波超压峰值减弱率均值是随爆源距的减小而递增的,防爆效果较好。  相似文献   

8.
刚性防爆墙迎爆面荷载计算方法研究   总被引:2,自引:0,他引:2  
洪武  范华林  金丰年  徐迎 《工程力学》2012,29(11):228-235
防爆墙作为一种有效的防护措施在国内外重要工程中得到了广泛应用,研究防爆墙迎爆面荷载计算方法有助于防爆墙的科学设计和合理使用。该文采用数值模拟的方法,对不同倾斜角度刚性墙迎爆面压力荷载的计算方法及不同倾角墙体的抗爆效能进行了研究。分析了冲击波在垂直墙体、迎向以及背向炸药倾斜墙体上的反射、绕流以及荷载分布规律,总结出了不同工况时墙体荷载计算方法。研究发现背向炸药倾斜的墙体与垂直墙体以及迎向炸药倾斜的墙体具有几乎相同的防护效果,但墙体所承受的荷载要低于其他两者,合理的解释了工程中存在的防爆墙后倾现象的力学机制。  相似文献   

9.
运用试验与数值模拟相结合的方法,对爆炸冲击波作用于防爆墙的荷载与冲击波绕过防爆墙的规律进行研究。采用压力传感器技术获得了防爆墙前后不同距离的压力时程曲线。基于ALE算法和炸药爆轰产物的JWL状态方程,对空气冲击波绕过墙体的环流现象进行了数值模拟,得到了爆源附近有障碍物的爆炸场初始发展和绕过墙体环流的情况,分析了空气冲击波的绕流规律。数值模拟与试验结果基本相符,反映了爆炸波绕过防爆墙的详细过程。通过对数值模拟和试验结果的分析,得到了爆炸波绕流的内在机理,为防爆墙的设计提供依据和参考。  相似文献   

10.
挡墙对爆炸冲击波传播影响的数值模拟   总被引:1,自引:0,他引:1  
李鑫  吴桂英  贾昊凯 《工程力学》2012,29(2):245-250
基于任意拉格朗日-欧拉(ALE)算法,采用有限元软件AutoDyn,对TNT 炸药地面起爆后,爆炸冲击波遇到挡墙时的传播规律进行了三维数值模拟。分析了炸药在自由空气中,刚性地面上,沙土地面上起爆情况下,对不同方向超压分布的影响,研究了当冲击波遇到挡墙时其迎爆面的超压和比冲量分布及冲击波绕射之后挡墙后方的超压和比冲量分布规律。分析结果表明:炸药起爆环境对冲击波超压有明显的影响,其影响程度随方向而定。爆炸冲击波遇到混凝土挡墙后将产生约2 倍于入射压力的反射超压;在比距离较小时,挡墙迎爆面的最大压力和比冲量均出现在挡墙底部。爆炸冲击波绕过挡墙之后将会发生环流汇聚现象,并且在冲击波相互碰撞下汇合处的超压较大。  相似文献   

11.
《工程爆破》2022,(6):1-8
研究爆炸荷载作用下钢梁钢柱节点的动力学性能,对有效预防整体结构的连续性倒塌具有重要意义。先利用有限元分析软件ANASYS/LS-DYNA对爆炸荷载作用下的钢梁进行数值模拟,并与Amr的实验结果进行对比以验证模型和所用材料参数的合理性;然后研究采用不同连接方式(狗骨式连接和端板螺栓式连接)对钢框架梁、柱节点抗爆性能的影响。研究表明:与端板螺栓式连接相比,在相同爆炸荷载作用下,狗骨式连接时节点的最大应力较小,梁跨中节点的最大挠度最大。由于狗骨式连接在梁的上、下翼缘处进行了一定的削弱处理,使得较长的梁段能同时进入塑性阶段,可有效保护节点。在相同爆炸荷载作用下,端板螺栓式连接时,节点的承载能力和抗塑性变形能力要优于狗骨式连接。  相似文献   

12.
采用缩比模型爆炸试验与数值仿真相结合的方法,开展了爆炸冲击波超压加载伪随机网壳的分布规律研究。首先,选取具有代表性的某伪随机140面体网壳结构,开展了缩比模型爆炸试验,获得了表面特征测点的冲击波超压数据;之后,对比分析了试验与仿真结果的误差及原因,以试验数据为基础,建立了爆炸冲击波与某伪随机140面体网壳结构相互作用的数值仿真模型,并对空中爆炸和地面爆炸的3种不同距离共6种工况下,网壳结构的特征表面超压作用过程进行了计算和分析,拓展了试验结果;最后,对伪随机网壳表面冲击波超压分布规律进行了研究,并提出了增强网壳结构安全性的防护措施,为伪随机网壳结构抗冲击安全设计提供了参考。结果表明:与传统对称网壳结构相比,伪随机网壳在超压峰值分布规律和作用机制等方面都更为复杂,受到结构伪随机特性的影响,在相似位置表面,超压峰值也有明显差异;网壳迎爆面底部和中部超压峰值与其他部位相比,一般较高;在网壳外一定距离构筑防爆墙和加固网壳中部及底部节点的方法,可提升伪随机网壳结构的抗冲击安全性。  相似文献   

13.
为了研究钢筋混凝土隔离墙在爆炸荷载作用下的动态响应和抗爆性能,采用LS-DYNA有限元软件建立9 m跨度隔离墙结构简化模型,模拟了不同药量和爆炸距离下隔离墙的动态响应。将模拟结果与经验超压公式计算结果和已有试验结果对比,验证了爆炸荷载和材料参数选取的合理性,分析了结构的破坏过程、冲击波作用规律、墙面荷载分布规律和结构变形情况。结果表明:建立的数值模拟可以较好地模拟爆炸冲击波与结构的相互作用;墙面冲击波压力衰减速率与药量和爆炸距离密切相关,墙面压力衰减幅度可达97.8%。在相同药量时,随着爆炸距离增加,墙体底部压力减小,顶部冲量增加;墙体结构由小变形转变为结构整体的较大变形;比例距离小于0.376■时,墙体底部容易发生剪切破坏。模拟结果可以为抗爆隔离墙的设计提供依据。  相似文献   

14.
为研究马赫波冲击波参数的变化规律以及装药类型和装药形状对三波点迹线的影响,采用有限元分析软件AUTODYN建立了TNT装药近地面空中爆炸的有限元模型,将计算结果与试验结果进行了对比,两者吻合良好。在此基础上,对不同装药形状和装药类型的炸药进行了近地面空中爆炸的数值模拟。研究结果表明:马赫波波阵面上的冲量随高度增大而缓慢减小,超压峰值随高度增大先缓慢下降而后迅速减小。马赫波与地面近似垂直,其顶部的超压峰值仅为底部的67.6%~80.3%,顶部的冲量为底部的91.3%~99.0%。球形装药和长径比为1的柱状装药的三波点迹线几乎完全相同,柱状装药长径比越大,马赫波高度反而越小。C4炸药形成的马赫波高度略大于B炸药,但两者较为接近,TNT形成的马赫波高度明显小于C4和B炸药。  相似文献   

15.
对装药主要由铝粉和环氧丙烷组成的3 kg级液固燃料空气炸药(FAE)进行静爆场试验,研究了不同二次起爆药(钝化黑索今)质量及多点起爆方式下FAE的爆炸情况,探讨了爆炸超压的变化规律。结果表明,在一定范围内增加二次起爆药质量能提高FAE爆炸超压,二次起爆方式的改变对FAE爆炸超压的影响较小。在二次起爆药质量较小的情况下,FAE抛散形成的云雾中,部分燃料在较低起爆能的激发下无法充分燃烧,甚至不能被点燃,存在爆炸不良效应。二次起爆药质量为120 g时,FAE的爆炸空中超压峰值是二次起爆药质量为60 g时的2.80~6.41倍,此时爆炸场超压趋于稳定。建议采用质量为120 g的起爆药柱作为二次起爆药来进行3 kg级液固型FAE的爆炸试验。研究结果有助于小型FAE试验中二次起爆药质量的选择,促进燃料的高效反应。  相似文献   

16.
美国UFC规范计算室内爆炸荷载时假设爆炸荷载在整个空间均匀分布,但由于壁面的限制作用,真实室内爆炸的压力场并不均匀。该文利用非线性显式动力分析程序AUTODYN的Remap技术对室内爆炸进行模拟,研究了壁面爆炸荷载的分布规律;依据壁面爆炸超压时程曲线特点及其峰值超压分布,对爆炸荷载作用区域进行划分,并提出了各区域爆炸荷载典型参数—峰值超压、冲击波作用时间、准静态峰值气体压力及吹降时间的计算式,建立了室内爆炸荷载简化模型,并进一步研究了爆源高度和房间尺寸对荷载简化模型的影响。结果表明:室内爆炸下壁面不同区域爆炸荷载的分布形式及计算方法不同,拟合得到了各区域爆炸荷载的简化计算式;爆源高度及房间尺寸对峰值超压影响较大,对冲击波冲量影响较小。  相似文献   

17.
设计并制作了3根普通钢管混凝土墩柱和1根复式中空钢管混凝土墩柱,进行了TNT药量分别为3 kg和50 kg的3发4工况静爆试验,获得构件的迎爆面及背爆面的柱面超压分布、残余变形以及最终破坏形态,结合有限元分析,研究了爆炸荷载下钢管混凝土墩柱的动态响应、破坏模态及参数影响。研究表明:50 kg TNT作用下、比例距离为0.14 m/kg1/3时,外径同为273 mm、壁厚为7 mm的普通钢管混凝土墩柱抵抗爆炸荷载的变形能力优于中空钢管内径为50 mm、壁厚为4 mm的复式钢管混凝土墩柱;基于试验结果建立了多物质流固耦合的数值模拟方法,可有效模拟钢管混凝土墩柱在爆炸荷载下的动态响应;钢管混凝土墩柱三种典型破坏形态分别是:低超压峰值-高持时发生弯曲破坏、高超压峰值-低持时发生剪切破坏及介于两种情况之间的弯剪破坏;炸药当量为50 kg,比例距离z>0.3 m/kg1/3时,爆炸荷载下试件柱的残余变形可忽略不计;核心混凝土强度等级的增强以及含钢率的提高,可有效降低柱中点水平残余变形;提高钢管屈服强度,可降低柱中残余变形,当钢材强度等级≥345 MPa时,继续增大屈服强度对提高钢管混凝土墩柱的抗爆性能意义不大。  相似文献   

18.
李世民  李晓军  郭彦朋 《爆破》2011,28(3):8-12
基于二次反应理论,采用AUTODYN程序对温压炸药(RDX/AWAL/粘合剂=20/43/25/12)自由场爆炸空气冲击波进行了数值模拟研究.得出结论:在比例距离1~8m/kg1/3内,铝粉后燃反应对超压峰值的贡献约为24%~31%,对正超压区冲量的贡献约为31%~39%,对正超压区持续时间的贡献约为12% ~95%,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号