首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonia gas detection by pure and catalytically modified WO/sub 3/-based gas sensors was analyzed. Sensor response of pure tungsten oxide to NH/sub 3/ was unsatisfactory, probably due to the unselective oxidation of ammonia into NO/sub x/. Copper and vanadium were introduced in different concentrations and the resulting material was annealed at different temperatures in order to improve the sensing properties for NH/sub 3/ detection. The introduction of Cu and V as catalytic additives improved the sensor response to NH/sub 3/. Possible reaction mechanisms of NH/sub 3/ over these materials are discussed. Sensor responses to other gases like NO/sub 2/ or CO and interference of humidity on ammonia detection were also analyzed so as to choose the best sensing element.  相似文献   

2.
We have deposited 150-nm-thick WO/sub 3/ films on Si/sub 3/N/sub 4//Si substrates provided with platinum interdigital electrodes and annealed in static air at 300/spl deg/C and 500/spl deg/C temperatures for 24 h and 200 h. The morphology, crystalline phase, and chemical composition of the films have been characterized using AFM, grazing incidence XRD and high resolution XPS techniques. The sensor resistance response curve has been obtained in the 0.2 -4 ppm NO/sub 2/ gas concentration range in humid air (50% relative humidity), varying the operating temperature between 25 and 250/spl deg/C. By plotting both sensor resistance and gas concentration logarithmically, the response is linear over the investigated dynamic range. Sensor sensitivities, here defined as the ratio of sensor resistance in gas to that in air (i.e., S=R/sub Gas//R/sub Air/), have been compared at a given NO/sub 2/ gas concentration (0.2 ppm). The long-term stability properties have been evaluated by recording film sensitivity for 1 yr under standardized test conditions. Increasing the annealing temperature from 300 to 500/spl deg/C causes the sensitivities to decrease. The 300/24h film is shown to be the most sensitive at S=233, but with poor long-term stability properties. The 300/200h film with S=32 is stable over the examined period. The 500/24 and the 500/200 films are shown to be less sensitive with S=16 and S=14, respectively. The longer the annealing time and the higher the temperature, the poorer the sensitivity, but with positive effects upon the long-term stability of the electrical response. The influence of the annealing conditions on sensitivity and long-term stability has been correlated with the concentration of surface defects, like reduced WO/sub 3/ phase (i.e., W/sup 4+/), which resulted in a strong effect on the sensors' response.  相似文献   

3.
A novel NO/sub 2/ sensor based on (CdO)/sub x/(ZnO)/sub 1-x/ mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO/sub 2/ is studied in the range 50/spl deg/C-350/spl deg/C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH/sub 4/ (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO/sub 2/ and dynamic behavior at 230/spl deg/C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230/spl deg/C). On the basis of this study, a possible sensing mechanism is proposed.  相似文献   

4.
A new kind of sandwich-like bis[2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato] samarium complex Sm[Pc/sup */]/sub 2/(Pc/sup */=Pc(OC/sub 8/H/sub 17/)/sub 8/) is used as film-forming material. Pure Sm[Pc/sup */]/sub 2/ and mixture of Sm[Pc/sup */]/sub 2/ and octadecanol(OA) deposited from both pure water and 10/sup -4/M Cd/sup 2+/ subphases are investigated. It is found that a mixture of 1:3 Sm[Pc/sup */]/sub 2/:OA forms an excellent material for the fabrication of the gas-sensing Langmuir-Blodgett (LB) film by studying the film-forming characteristics. A new gas sensor has been fabricated by incorporating the multilayer LB film into the gate electrode of a metal-oxide-semiconductor field effect transistor, forming an array of charge-flow transistor. On the application of a gate voltage (V/sub GS/), greater than the threshold voltage (V/sub TH/), a delay was observed in the response of the drain current. This is due to the time taken for the resistive gas-sensing film to charge up to V/sub GS/. This delay characteristic was found to depend on the concentration of NO/sub 2/. Results are presented showing that the device can detect reversibly the concentration of NO/sub 2/ gas down to 5 ppm at room temperature.  相似文献   

5.
The effect of humidity on chromium titanium oxide (Cr/sub 2-x/Ti/sub x/O/sub 3+z/, CTO), on both baseline resistance and sensitivity, is small compared to SnO/sub 2/. This has been the key to development of thick-film sensors based on CTO, for detection of carbon monoxide and ammonia in synthetic air. Thin-film structures on silicon substrates offer the possibility to use fabricating, bonding and housing equipment and, hence, a low cost gas sensor production is possible. CTO thin-film sensors on silicon substrates use conventional photolithography, sputtering and evaporation techniques. A Ta/Pt resistance layer (25/200-nm thick) for heating the device to its operating temperature and interdigital electrodes are evaporated and structured on a silicon substrate which is covered by a 1-/spl mu/m SiO/sub 2/ insulating layer. The polycrystalline p-type CTO is deposited onto the electrodes by oxidizing reactive sputtering or evaporation of Cr/Ti-sandwich structures. The resulting sensors were characterized by means of energy dispersive X-ray analysis, secondary electron microscopy, and X-ray diffraction pattern. Also, gas responses toward NO/sub 2/, NH/sub 3/, CO and CH/sub 4/, and different humidity, were investigated.  相似文献   

6.
Graphene-based nanocomposites have proven to be very promising materials for gas sensing applications. In this paper, we present a general approach for the preparation of graphene-WO(3) nanocomposites. Graphene-WO(3) nanocomposite thin-layer sensors were prepared by drop coating the dispersed solution onto the alumina substrate. These nanocomposites were used for the detection of NO(2) for the first time. TEM micrographs revealed that WO(3) nanoparticles were well distributed on graphene nanosheets. Three different compositions (0.2, 0.5 and 0.1 wt%) of graphene with WO(3) were used for the gas sensing measurements. It was observed that the sensor response to NO(2) increased nearly three times in the case of graphene-WO(3) nanocomposite layer as compared to a pure WO(3) layer at room temperature. The best response of the graphene-WO(3) nanocomposite was obtained at 250?°C.  相似文献   

7.
A noble type of oxygen-sensitive and electrical-conductive material, ZrO/sub 2/-based with /spl alpha/-Fe/sub 2/O/sub 3/ thick-film gas sensor, was investigated for low operating temperature. Amorphous-like solid solutions of x/spl alpha/-Fe/sub 2/O/sub 3/-(1-x)ZrO/sub 2/ powders were derived using the high-energy ball milling technique, and their physical and microstructural properties were characterized from DTA, XRD, TEM, and XPS. The oxygen gas-sensing properties of the screen-printed thick-film gas sensors fabricated from such mechanically-alloyed materials were characterized systematically. Very good sensing properties were obtained with a relative resistance value of 82 in 20% oxygen, and at a low operating temperature of 320/spl deg/C. AC impedance spectra and thermally stimulated current were characterized to investigate the conduction properties of the solid solution, 0.2/spl alpha/-Fe/sub 2/O/sub 3/-0.8ZrO/sub 2/, in air and nitrogen (carrier gas), respectively. It was found that the Arrhenius plots of /spl sigma/T versus 1000/T have two distinct gradients corresponding to two activation energies in the high and low temperature regions. The transition temperature occurs at about 320/spl deg/C that corresponds to an optimal operating temperature of the gas sensor. It is believed that the high oxygen vacancy concentration present in the solid solution, 0.2/spl alpha/-Fe/sub 2/O/sub 3/-0.8ZrO/sub 2/, and the dissociation of the associated oxygen vacancy defect complexes at 320/spl deg/C are the critical factors for the high relative resistance to oxygen gas at low operating temperature.  相似文献   

8.
Ultrahigh-sensitivity SnO/sub 2/-CuO sensors were fabricated on Si(100) substrates for detection of low concentrations of hydrogen sulfide. The sensing material was spin coated over platinum electrodes with a thickness of 300 nm applying a sol-gel process. The SnO/sub 2/-based sensors doped with copper oxide were prepared by adding various amounts of Cu(NO/sub 3/)/sub 2/.3H/sub 2/O to a sol suspension. Conductivity measurements of the sensors annealed at different temperatures have been carried out in dry air and in the presence of 100 ppb to 10-ppm H/sub 2/S. The nanocrystalline SnO/sub 2/-CuO thin films showed excellent sensing characteristics upon exposure to low concentrations of H/sub 2/S below 1 ppm. The 5% CuO-doped sensor having an average grain size of 20 nm exhibits a high sensitivity of 2.15/spl times/10/sup 6/ (R/sub a//R/sub g/) for 10-ppm H/sub 2/S at a temperature of 85/spl deg/C. By raising the operating temperature to 170/spl deg/C, a high sensitivity of /spl sim/10/sup 5/ is measured and response and recovery times drop to less than 2 min and 15 s, respectively. Selectivity of the sensing material was studied toward various concentrations of CO, CH/sub 4/, H/sub 2/, and ethanol. SEM, XRD, and TEM analyses were used to investigate surface morphology and crystallinity of SnO/sub 2/ films.  相似文献   

9.
王杰  耿欣  张超 《材料导报》2016,30(1):14-18, 32
近年来,氧化钨(WO_3)基半导体气体传感器由于可用来检测低浓度二氧化氮、二氧化硫、臭氧和氨气等气体而受到广泛关注。将WO_3基材料分为4类:纯WO_3材料、氧化物-WO_3复合材料、贵金属-WO_3复合材料和有机物-WO_3复合材料,总结近年来中外文献中WO_3基材料对不同气体的响应性能,展现近年来国内外WO_3基半导体气体传感器的研究进展。最后根据已有的工作进展,提出合成新型纳米材料、降低工作温度、提高传感器选择性应成为WO_3基半导体气体传感器下一阶段的研究重点。  相似文献   

10.
The gas which may be lethal to human body with short-term exposure in common industrial fields or workplaces in LAB may paralyze the olfactory sense and impose severe damages to central nervous system and lung. This study is concerned with the gas sensor which allows individuals to avoid the toxic gas that may be generated in the space with residues of organic wastes under 50 degrees C or above. This study investigates response and selectivity of the sensor to hydrogen sulfide gas with operating temperatures and catalysts. The thick-film semiconductor sensor for hydrogen sulfide gas detection was fabricated WO3/SnO2 prepared by sol-gel and precipitation methods. The nanosized SnO2 powder mixed with the various metal oxides (WO3, TiO2, and ZnO) and doped with transition metals (Au, Ru, Pd Ag and In). Particle sizes, specific surface areas and phases of sensor materials were investigated by SEM, BET and XRD analyses. The metal-WO3/SnO2 thick films were prepared by screen-printing method. The measured response to hydrogen sulfide gas is defined as the ratio (Ra/R,) of the resistance of WO3ISnO2 film in air to the resistance of WO3/SnO2 film in a hydrogen sulfide gas. It was shown that the highest response and selectivity of the sensor for hydrogen sulfide by doping with 1 wt% Ru and 10 wt% WO3 to SnO2 at the optimum operating temperature of 200 degrees C.  相似文献   

11.
H/sub 2/S gas-sensing properties of a novel SnO/sub 2/-CuO structure consisting of ultrathin (/spl sim/10 nm) CuO dotted islands (600 /spl mu/m diameter) on 120-nm thick, sputtered SnO/sub 2/ film are compared with a pure SnO/sub 2/ and a SnO/sub 2/-CuO bilayer sensor. The SnO/sub 2/-CuO-dotted sensor exhibited a high sensitivity of 7.3/spl times/10/sup 3/ at a low operating temperature of 150/spl deg/C. A fast response time of 14 s for 20 ppm of H/sub 2/S gas and a recovery time of 118 s under flowing air have been measured. The electronic interaction due to modulation of the space charge regions between the distributed p-type CuO islands on the n-type SnO/sub 2/ thin-film surface and the presence of adsorbed oxygen on the SnO/sub 2/ support have been analyzed. Dissociated hydrogen available from the CuO-H/sub 2/S interaction spills over and its chemical interaction with the adsorbed oxygen on the SnO/sub 2/ surface is found to play a dominant role in the observed fast response characteristics.  相似文献   

12.
Single crystalline /spl beta/-Ga/sub 2/O/sub 3/ nanowire and nanoribbon materials were synthesized, and electrical and mechanical properties were studied for sensing applications. The structural analysis showed that the Ga/sub 2/O/sub 3/ nanomaterials were stoichiometric and had the same crystal lattice structure as the /spl beta/ phase Ga/sub 2/O/sub 3/ crystal. The mechanical study on individual Ga/sub 2/O/sub 3/ nanowires and nanoribbons showed that they had a bending modulus of around 300 GPa, are flexible (in bending and twisting), and are easy to be cleaved along their crystal lattice. The current-voltage electrical characterization through the thickness of nanoribbon and along the length of nanowire confirmed their semiconducting characteristic. A two-terminal device fabricated with an individual Ga/sub 2/O/sub 3/ nanowire showed good sensing response to ethanol gas at low-operating temperature, which revealed the potential of using such nanostructures for effective sensing applications.  相似文献   

13.
In this paper, we describe the optical and electrical gas-sensing properties of In/sub x/O/sub y/N/sub z/ films with an ultrathin gold promoter overlayer. We have fabricated In/sub x/O/sub y/N/sub z/ films with a nanocrystalline porous structure by RF-sputtering in Ar/N/sub 2/ followed by an annealing process. Gold particles with 20-30-nm diameter have been formed on top of the In/sub x/O/sub y/N/sub z/ films by dc sputtering and an annealing process. We have investigated the optical H/sub 2/and NO/sub 2/-sensing properties (change of absorbance) and also the electrical sensing effect (change of electrical resistance) for these two gases. A combined optical/electrical sensor for H/sub 2//NO/sub 2/ is proposed.  相似文献   

14.
The performances of metal oxide semiconducting materials used as gas-sensing detectors depend strongly on their structural and morphological properties. The average grain size has been proved to play a prominent role and better sensor performances were found in polycrystalline films where the grain size is few tens of nm or smaller. On the other hand, thermal treatments during thin-film deposition and/or sample postprocessing could lead to a grain coalescence, thus decreasing the conductivity of the sensing film. Avoiding such a phenomenon, still keeping optimized processing conditions, will increase the sensor performances, maintaining the resistivity at acceptable values. In this work, new gas-sensing materials and new thin-film deposition procedures have been investigated. Aiming to preserve the sensitivity, to enhance selectivity and to reduce the drift, thin films of WO/sub 3/ and CrTiO/sub 3/ deposited by pulsed-laser ablation (PLA) and of SnO/sub 2/ deposited by rheotaxial growth and thermal oxidation techniques were comparatively characterized. Three issues were mainly addressed: the variation of the conductivity as a function of RH, the sensitivity toward benzene, CO, acetone, and NO/sub 2/, and the selectivity.  相似文献   

15.
CNT-WO3元件的氨敏性能研究   总被引:14,自引:0,他引:14  
以碳纳米管(CNT)为掺杂剂制成CNT—WO3旁热式气敏元件.采用混酸氧化法对碳纳米管进行纯化,化学沉淀法制备了纳米WO3微粉,并用TEM、FT—IR、TG—DSC、XRD等方法进行了表征.测试了元件在室温条件下对NH3的气敏性能.结果表明,碳纳米管掺杂元件在室温下对NH3的灵敏度远远高于纯WO3元件,其中0.8wt%的掺杂元件对NH3具有最高的灵敏度.另外,掺杂元件还具有检测浓度低、检测范围宽、选择性好等优点,是一种较为理想的氨敏元件.  相似文献   

16.
Nano-sized SrTiO/sub 3/-based oxygen sensors were fabricated from synthesized SrTiO/sub 3/ and commercial SrTiO/sub 3/ using the high-energy ball milling and the thick-film screen-printing techniques. The particle sizes, microstructural properties, oxygen-sensing properties, and humidity effects of the synthesized nano-sized SrTiO/sub 3/-based oxygen sensors were characterized using X-ray diffraction (XRD), transmission electron microscope, scanning electron microscope (SEM), and gas sensing measurements. Experimental results showed that the particle size of the powders was milled down to be around 27 nm. The effect of different annealing temperatures (400/spl deg/C, 500/spl deg/C, 600/spl deg/C, 700/spl deg/C, and 800/spl deg/C) on the gas sensing properties of the synthesized SrTiO/sub 3/ sensor from nitrogen to 20% oxygen was characterized. The commercial SrTiO/sub 3/ devices annealed at 400/spl deg/C, both with 0-h and 120-h milling time, were used for comparison. The optimal relative resistance (R/sub nitrogen//R/sub 20%oxygen/) value of 6.35 is obtained for the synthesized SrTiO/sub 3/ sample annealed at 400/spl deg/C and operating at 40/spl deg/C. This operating temperature is much lower than that of conventional metal oxide semiconducting oxygen gas sensors (300/spl deg/C-500/spl deg/C) and SrTiO/sub 3/ oxygen gas sensors (>700/spl deg/C). The response and recovery times are 1.6 and 5 min, respectively. The detected range is 1-20% oxygen. The impedance of the synthesized SrTiO/sub 3/ sensor with annealing at 400/spl deg/C and operating at 40/spl deg/C (from 1 mHz to 10 MHz) in 20% oxygen ambient was found to be independent of the relative humidity (dry, 20% RH, 80% RH, near 100% RH).  相似文献   

17.
SCR烟气脱硝催化剂V_2O_5-WO_3/TiO_2性能研究   总被引:1,自引:0,他引:1  
通过浸渍法制备了V2O5-WO3/TiO2催化剂,考察催化剂在SCR反应中的脱硝性能.结果表明,WO3的引入扩宽了催化剂的反应窗口,随着WO3含量增加,脱硝率略有上升,特别是在高温阶段.当WO3含量为8%时,催化剂具有最佳效果,在250~400℃范围内,NO脱除率都能达到95%以上,450℃时,脱硝率仍能达到89.19%.此外,进一步考察了空速值、氧浓度、氨氮比、NO初始浓度等不同条件下对催化剂活性的影响.  相似文献   

18.
Semiconducting metal-oxide gas sensors are generally nonselective, which limits their use as natural gas detectors in domestic environments when ethanol is present in high background concentrations. Using a thin-film Ga/sub 2/O/sub 3/ sensor with a thick-film catalyst filter of Ga/sub 2/O/sub 3/ and an operating temperature of 800/spl deg/C, the cross-sensitivity to ethanol is strongly reduced and the sensor response to methane is enhanced. Detection of natural gas is made reliable and the rate of false alarms is reduced. Oxidation of ethanol and methane over gallium oxide is studied using GC product analysis. These measurements of catalytic activity help to clarify the reactions involved in the filtering mechanism. Elimination of the ethanol cross-sensitivity is attributed to the thermal combustion of ethanol as it passes over the hot filter. The sensor response to methane is enhanced as methane is activated by the active catalytic Ga/sub 2/O/sub 3/ thick-film.  相似文献   

19.
This paper describes two different semiconductor gas sensors devoted to the detection of oxidizing pollutants in the atmosphere. The first sensor consists of thin films of phthalocyanines as sensing layers (CuPc, ZnF/sub 16/Pc, and LuPc/sub 2/) evaporated onto alumina substrate fitted with interdigitated electrodes. The second sensor is realized with a mineral monocrystalline semiconductor: n-doped epitaxial layer grown on a semi-insulating substrate of indium phosphide. Each sensor has been submitted to low-controlled concentrations of ozone and nitrogen dioxide, and their detection characteristics, such as response time, stability, and sensitivity, are described. Comparison of these two sensors shows their complementary sensing characteristics, and NO/sub 2/ and O/sub 3/ act in the same way. Measurements under noncontrolled atmosphere (urban air) have been realized and have demonstrated the potentialities of these structures to be used as oxidizing pollutant detectors. Proposed methods to improve the detection of oxidizing species in urban air are discussed.  相似文献   

20.
王大伟  黄世震 《计测技术》2006,26(Z1):50-53
分别采用改进前后的溶胶-凝胶法制备WO3纳米材料,制作成直热式球形气敏元件,对低浓度的NO2气体进行测试.结果表明,改进后的溶胶-凝胶法制备的WO3材料,粒径小,表面疏松,对低浓度甚至极低浓度的NO2气体有很好的灵敏度,响应恢复时间很快,选择性好,而且所有元件都在较低的工作电压下有最高的灵敏度,说明工作温度低有利于降低功耗.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号