首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
以骨组织工程学的方法制备了一种新型BMP/α-TCP复合骨水泥材料.通过体外蛋白质释放实验、强度实验及X射线衍射分析,考察了BMP在复合材料中的释放规律;通过组织学分析和X射线检查,研究了新型复合骨水泥材料对兔颅骨缺损的修复实验.结果表明:在模拟体内环境中,BMP自BMP/α-TCP复合材料中的释放规律符合Higuchi方程,BMP以扩散方式释放,BMF和α-TCP骨水泥复合后固化时间不受影响,BMP释放后材料强度随浸泡时间延长而增高,BMP释放4周后强度达到纯α-TCP骨水泥固化强度,X射线衍射分析表明材料向羟基磷灰石转化.骨缺损修复实验表明:新型骨水泥成骨能力强,能在短期内完全修复兔颅骨缺损.  相似文献   

2.
采用原位共聚法制备聚DL丙交酯/β-磷酸三钙(PDLLA/β-TCP)复合骨修复材料.以辛酸亚锡作引发剂,将一定比例的β-磷酸三钙与DL丙交酯(DLLA)混匀后在真空体系下开环聚合,并持续均匀振荡,得到PDLLA/β-TCP复合材料.通过扫描电镜(SEM)、能谱分析(EDS)表征复合材料的有机-无机界面及整体复合情况;通过复合材料中PDLLA分子量及复合材料力学强度的测试考察了β-TCP的较佳加入量.研究发现:复合材料中β-TCP在PDLLA基质中分布均匀,有机-无机界面结合紧密;β-TCP比例越大,复合材料中PDLLA分子量越小;β-TCP对材料强度有增强作用,当β-TCP比例为30 wt%时,复合材料抗压强度可达99 MPa,抗弯强度可达76 MPa.  相似文献   

3.
在骨修复领域以无机钙质成分增强的聚乳酸基复合材料应用最为广泛.本文采用原位共聚法制备聚DL丙交酯/β-磷酸三钙(PDLLA/β-TCP)复合骨修复材料.以辛酸亚锡作引发剂,将一定比例的β-磷酸三钙与D L丙交酯(DLLA)混匀后在真空体系下开环聚合,并持续均匀振荡,得到PDLLA/β-TCP复合材料.研究发现,TCP的加入对材料强度有增强作用,但β-TCP的加入对PDLLA的分子量将造成不利影响.在引发剂质量分数为0.1%,150℃反应16h,β-TCP的加入量为30%条件下,材料抗压强度达95MPa,抗弯强度达69MPa.  相似文献   

4.
根据仿生学原理,以纳米β-磷酸三钙颗粒(nanoβ-TCP)、胶原(Col)与硫酸软骨素(CS)为原材料通过热脱氢交联(DHT)-碳化二亚胺(EDC)复合改性制备了纳米β-磷酸三钙-胶原/硫酸软骨素(nanoβ-TCP-Col/CS)支架复合材料,利用XRD和AFM分析nanoβ-TCP-Col/CS支架复合材料的微观结构,并进一步采用SEM、XPS、TG和在模拟体液(SBF)中的矿化与降解实验等分析手段对nanoβ-TCP-Col/CS支架复合材料的结构与性能进行表征。结果表明:所用β-TCP晶体的平均尺寸为41.3nm,属纳米级;nanoβ-TCP-Col/CS支架复合材料中nanoβ-TCP与Col、CS之间具有较强的相互作用;nanoβ-TCP-Col/CS复合材料具有较高的稳定性、一定的矿化生物活性以及适宜的生物降解性,是一种潜在的口腔修复材料。  相似文献   

5.
采用混合溶剂(氯仿,丙酮)溶解后的聚乳酸(PLLA)与β磷酸三钙(β-TCP)、制孔剂碳酸氢氨(NH4HCO3)复合,冷冻干燥成型制备聚乳酸/β磷酸三钙多孔复合支架材料.正交实验结果表明,适当比例的混合溶剂在-10℃间体积收缩干燥制备的材料具有良好的成型性能和力学强度,碳酸氢氨(粒径200~400μm)质量比为30%(wt),PLLA/β-TCP质量比为1:1时,制备的支架材料抗压强度5.6MPa,孔隙率66.3%,孔径200~400μm.得到理想的复合骨修复多孔支架材料.  相似文献   

6.
薛媛  但年华  但卫华 《材料导报》2017,31(2):8-12, 19
通过碳化二亚胺(EDC)改性、二次冻干制备多孔胶原-β-磷酸三钙-硫酸软骨素复合膜材料。通过扫描电镜(SEM)、X射线衍射分析仪(XRD)与原子力显微镜(AFM)考察了组分变化与制备过程中复合材料的微观形貌变化,并进一步利用红外、孔隙率、MTT细胞毒性实验等分析手段对复合材料的结构与性能进行了表征。实验结果表明,当胶原盐酸溶解液pH=2,胶原与β-磷酸三钙质量比为1∶2(m(Col)∶m(β-TCP)=1∶2)时,复合材料中β-TCP晶相保持较好,其与胶原之间的排列结合最为均匀紧密。经EDC改性后,SEM与AFM实验均显示了交联后的胶原束明显变大变粗,以一定的方向紧密地排列在一起。XRD图谱显示复合材料中β-TCP特征衍射峰明显。复合材料的孔径为80~90μm,三元膜孔隙率为(90.76±1.28)%,大于纯胶原冻干膜(85.88±0.92)%;红外光谱证实β-TCP中的钙离子与Col上的羧基发生了化学键合,AFM显示β-TCP颗粒能与胶原发生直接联结。复合材料的MTT实验结果为1级,是一种潜在的口腔修复膜材料。  相似文献   

7.
采用微细α-磷酸三钙(α-TCP)粉料、辅助料与冻干牛骨形态发生蛋白(BMP)预先固相混合制备了新型磷酸钙(CPC)/BMP复合生物骨水泥.通过水化、凝固性能研究优化了配料成分、调和液和促凝剂组成;通过大鼠肌袋种植实验研究了骨水泥的异位成骨性能.结果表明:以α-TCP:CaHPO4:CaO(0.95:0.025:0.025)为固相配料,以0.25mol/LNaH2PO4/Na2HPO4混合液([P]T=0.5mol/L)作为调合液可制备性能优异的骨水泥材料,骨水泥初凝时间为6min,终凝时间为30min,固化强度达33MPa,达到临床手术的要求;α-TCP粉料粒度对骨水泥凝固性能影响显著,实验选用α-TCP粉料粒径d50为1.3μm;骨水泥在Hank’s溶液中浸泡5天抗压强度可达最大值;骨水泥块经浸泡后内部生成针状羟基磷灰石晶体的网状结构.新型CPC/BMP复合骨水泥异位成骨作用明显,4周即能快速形成板层骨结构,证明该新型复合材料具有较强的诱导成骨活性.该生物活性骨水泥复合材料可望成为一类新型组织工程骨修复材料.  相似文献   

8.
以神经脱细胞基质(NAM)凝胶作为载体,在多孔脱钙骨内表面负载BMP-2,制备新型复合骨修复材料。采用扫描电镜观察材料微观结构,结果表明脱钙骨基质(DBM)复合负载BMP-2的脱细胞基质凝胶后有利于细胞粘附;力学检测结果显示脱钙骨未复合神经脱细胞基质凝胶时,材料的抗压强度为(1.04±0.44)MPa,脱钙骨复合神经脱细胞基质凝胶之后,抗压强度为(1.00±0.30)MPa,材料复合凝胶前后力学性能改变不明显;模拟体内环境,检测不同时间点复合材料中的BMP-2缓释性能,复合材料可缓慢释放BMP-2至少一个月;在材料内部种植MC3TE-E1细胞,共培养14天,CCK-8、碱性磷酸酶检测表明负载BMP-2的神经脱细胞基质凝胶复合脱钙骨材料能够促进细胞增殖和成骨分化。神经脱细胞基质凝胶/BMP-2/钙骨复合材料具有潜在的骨修复应用前景。  相似文献   

9.
将自体富集骨髓间充质干细胞(MSCs),快速复合多孔β磷酸三钙(β-TCP),构建生物活性复合材料(MSCs/β-TCP)。通过分层随机分组对照比较了MSCs/β-TCP与单纯β-TCP及自体骨在羊腰椎后路融合的效果。测定富集后碱性磷酸酶染色为阳性的细胞集落单位(CFUs/ALP+,即MSCs数量)变化情况。用扫描电镜观察了MSCs与β-TCP短期复合情况。通过X线、CT扫描和组织学观察对比植入材料成骨情况及转归。结果表明,富集后MSCs数量增加约3.9倍,短期复合2 h后MSCs即可在多孔β-TCP内壁黏附;X线检查,MSCs/β-TCP组与自体骨组的融合区逐渐有中高密度影形成,CT扫描测定MSCs/β-TCP组与自体骨组的融合率,分别为92%和100%,明显高于单纯β-TCP组(58%)。硬组织形态计量学证实,复合材料MSCs/β-TCP与自体骨的骨再生能力相当,优于单纯β-TCP材料。   相似文献   

10.
通过碳化二亚胺(EDC)改性、二次冻干制备多孔胶原-β-磷酸三钙-硫酸软骨素复合膜材料.通过扫描电镜(SEM)、X射线衍射分析仪(XRD)与原子力显微镜(AFM)考察了组分变化与制备过程中复合材料的微观形貌变化,并进一步利用红外、孔隙率、MTT细胞毒性实验等分析手段对复合材料的结构与性能进行了表征.实验结果表明,当胶原盐酸溶解液pH=2,胶原与β-磷酸三钙质量比为1∶2(m(Col)∶m(β-TCP)=1∶2)时,复合材料中β-TCP晶相保持较好,其与胶原之间的排列结合最为均匀紧密.经EDC改性后,SEM与AFM实验均显示了交联后的胶原束明显变大变粗,以一定的方向紧密地排列在一起.XRD图谱显示复合材料中β-TCP特征衍射峰明显.复合材料的孔径为80~90 μm,三元膜孔隙率为(90.76士1.28)%,大于纯胶原冻干膜(85.88士0.92)%;红外光谱证实β-TCP中的钙离子与Col上的羧基发生了化学键合,AFM显示β-TCP颗粒能与胶原发生直接联结.复合材料的MTT实验结果为1级,是一种潜在的口腔修复膜材料.  相似文献   

11.
结合自体碎骨修复和组织工程的原理,在微球材料表面黏附足够的成骨细胞后,植入体内进行骨修复,是骨修复方法中的新思路。选择壳聚糖/β-TCP复合微球以及β-TCP微球作为材料体系。首先采用反相乳液悬浮法制备壳聚糖/β-TCP复合微球,再经过脱脂-烧结工艺获得仅含有B-TCP的无机微球。粒度分析发现,获得的微球球径主要分布在150-450μm范围内,平均球径约300μm。XRD结果显示烧结后的微球中仅有β-TCP相.SEM观察和压汞法测量发现,经烧结后微球表面无尖锐的棱角存在,表面与内部存在大量1.5~5μm的孔隙,孔隙率达到48%以上。复合微球中孔隙较少,其表面较粗糙。细胞培养实验发现细胞在两种微球表面均生长良好,表明它们均具有良好的生物活性和细胞相容性。  相似文献   

12.
采用溶液浇铸-模压成型-沥滤方法制备了β-TCP/PLLA多孔支架材料, 将支架材料与大鼠骨膜成骨细胞复合获得新型组织工程骨修复材料. 通过抗压强度及压缩模量的表征研究了支架材料的力学性能; 采用SEM观测、MTT法、碱性磷酸酶活性及骨钙素分泌量检测细胞复合材料的体外成骨特性; 通过裸鼠肌袋种植, 以组织学方法评价细胞复合材料的异位成骨能力. 结果表明: β-TCP/PLLA多孔支架材料孔隙率可调, 孔径为100~00μm, 孔道相互贯通; 材料抗压强度和压缩模量随孔隙率的增大而降低, β-TCP复合PLLA后材料的力学性能高于同孔隙率的纯PLLA多孔材料; 复合支架材料适宜骨膜成骨细胞粘附和生长, 无细胞毒性; 骨膜成骨细胞复合β-TCP/PLLA支架材料的体外成骨特性良好, 且具有体内异位成骨能力.  相似文献   

13.
研究中,α-磷酸三钙(α-tricalcium phosphate,α-TCP)分别以0,5%,10%,15%,20%,25%的比例与α-半水硫酸钙(α-calcium sulfate hemihydrate,α-CSH)进行复合;分别以0.9%NaCl溶液、2.5%Na_2HPO_4溶液、7%柠檬酸(citric acid,CA)溶液以及2.5%Na_2HPO_4和7%CA(2.5%Na_2HPO_4/7%CA)混合溶液为4种固化液与固体粉末进行复合;对硫酸钙/磷酸三钙骨水泥(α-CSH/α-TCP)的可控性进行研究。实验对复合材料进行扫描电镜(scanning electron microscope,SEM)观察、X射线衍射(X-ray diffraction, XRD)分析、固化时间、力学性能和降解性能测试。探讨了加入α-TCP含量的改变对以α-CSH为基体的骨水泥性能的影响;另外,在α-CSH和α-TCP的含量一定时,讨论固化液对α-CSH/α-TCP性能的影响。结果表明在硫酸钙基骨水泥中添加平均粒径为0.21μm的α-TCP后,α-CSH/α-TCP的降解性能相较于纯的α-CSH基骨水泥得到改善。随着α-TCP含量的增加,固化时间延长,力学性能呈现逐渐减弱的趋势;当α-TCP含量为15%时,Na_2HPO_4和CA的加入可以延长α-CSH/α-TCP的凝固时间,但是以Na_2HPO_4为固化液的复合材料抗压强度明显高于α-CSH/α-TCP与其它几种固化液的复合材料。α-TCP的添加,以及不同的固化液在一定程度可对复合骨水泥的力学性能、凝固时间和降解速率进行调节,为骨修复材料的临床应用提供实验依据。  相似文献   

14.
为了提高β-磷酸三钙(β-TCP)复合材料的机械性能,采用硬脂酸(C17H25COOH)对β-TCP表面进行改性处理,研究了β-TCP与C17H25COOH的界面作用机理.利用透射电镜、傅里叶红外光谱、热重分析等技术分别对改性前后β-TCP的颗粒形貌、组分和表面—OH基团进行了表征,研究了改性β-TCP/聚左旋乳酸(PLLA)复合材料的机械性能,并利用扫描电镜观察了复合材料断面形貌.研究表明:硬脂酸包覆在β-TCP表面,改性后β-TCP粉末具有一定的疏水性,硬脂酸的H+可以与β-TCP中的PO43-的一个O发生质子化反应形成—OH.改性β-TCP/PLLA复合材料的机械性能相比改性前有明显提高,改性后的β-TCP微粒在PLLA中分散均匀,两者结合紧密.  相似文献   

15.
通过浸渍法制备了密胺海绵(MS)/导电炭黑-硼酸盐(CB@B)复合物,并进一步真空灌注硅橡胶(SR)后制备了MS/CB@B/SR复合材料。使用XRD、SEM对复合材料的物相、微观结构进行表征并测试了其导电与介电性能、压敏特性和吸波性能。研究发现,CB@B复合物利用MS模板在复合材料内部构建了三维逾渗网络,其导电逾渗阈值为1.48%(体积分数),CB与B对提高复合材料性能具有显著的协同作用。随着CB浓度提高,复合材料的导电性和介电常数逐步提高,当CB浓度为14 mg/mL时,复合材料的体积电阻率最低可达到6.7×10~4Ω·cm,介电常数在1 kHz时高达1.67×10~4,当样品厚度为3 mm时,在30.97 GHz处出现最低反射率(RL=-33.17 dB),吸波带宽(RL-10 dB)为5.38 GHz。当CB浓度为10 mg/mL时,复合材料的电阻和介电常数还表现出较高的压缩应变灵敏度。  相似文献   

16.
目的构建骨形成蛋白2(Bone morphogenetic proteins2,BMP-2)基因修饰的β磷酸三钙(βtricalcium phosphate,β-TCP)/胶原复合支架材料,探讨其体内修复大鼠临界颅骨缺损的效果,评价其作为骨缺损修复材料的性能。方法制备纳米级多孔β-TCP/胶原支架,并负载100μg BMP-2质粒DNA形成基因修饰的支架材料。将24只成年雄性SD大鼠随机分为BMP-2基因修饰的β-TCP/胶原支架组(n=8),β-TCP/胶原支架组(n=8),空白组(n=8)。在大鼠颅骨顶部建立两个直径5mm的临界性骨缺损,植入材料后6周、12周取样本大体观察,组织学观察,免疫组织化学检测,并进行骨组织测量分析。结果组织学观察可见12周时,材料已完全降解。BMP-2基因修饰支架组6周时,骨缺损区成骨活跃形成编织骨;12周时,骨缺损已基本愈合,新生骨组织逐渐成熟呈板层状,与宿主骨形成骨性连接。而单纯支架组6周时,骨缺损中心区为少量岛状骨组织;12周时,新生骨组织连接呈片状,骨缺损未完全愈合。免疫组化检测显示:6周和12周时,BMP-2基因修饰支架组中BMP-2表达均强于单纯支架组和空白组。骨组织形态计量分析显示BMP-2基因修饰支架组成骨质量和成骨效率明显高于单纯支架组和空白组(P<0.05)。结论 BMP-2基因修饰的β-TCP/胶原复合材料具有良好的生物相容性,骨诱导和骨传导性佳,是很有潜力的新型骨缺损修复材料。  相似文献   

17.
采用溶剂自扩散原理从聚L-乳酸(PLLA)/β-磷酸三钙(β-TCP)氯仿液中沉积得到PLLA/β-TCP复合颗粒,研究了不同扩散介质对该过程的影响.研究表明制备复合颗粒以丙酮/无水乙醇混合液为扩散介质效果最佳,以其为扩散介质沉积速率快、沉积充分,且得到的复合颗粒可以经模压成型、粒子沥滤工艺制备PLLA/β-TCP多孔复合支架.对多孔支架进行了SEM、孔隙率、力学性能及有机溶剂残留量测试,结果表明制备的多孔支架孔结构三维贯通,孔隙率60.3%,抗压强度4.40MPa,氯仿、丙酮、无水乙醇残留量分别为3.630×10-5、2.07 × 10-6、2.517×10-5,满足组织工程支架材料要求.  相似文献   

18.
以β-磷酸三钙/硅酸钙(β-TCP/CS)纳米复合粉体为原料, 制备了质量比为50:50的β-TCP/CS复合生物陶瓷. 研究表明, 1150℃烧结5h得到的样品强度最好, 其致密度>96%, 晶粒尺寸约120nm, 强度达126MPa、同人体致密骨相当; 复合陶瓷在模拟体液中浸泡1天表面就全部被类骨羟基磷灰石层覆盖住, 28天的降解率达10.1%, 具有良好的生物活性和降解性. 研究结果显示β-TCP/CS复合生物陶瓷有望作为强度较好的可降解生物活性硬组织修复材料.  相似文献   

19.
采用环氧衍生物开环法制备壳聚糖季铵盐,通过其与甘油磷酸钠的分子间作用力交联成凝胶,冻干后得多孔支架,用于装载骨形态发生蛋白-2应用于骨修复领域;同时引入β-TCP作为物理交联点,在提高支架力学强度的同时,更好地调控支架的溶胀行为,延长rhBMP-2的释放时间,并且在异位诱导成骨的动物实验中取得良好效果。  相似文献   

20.
将聚磷酸钙(CPP)与生物羟基磷灰石(HA)复合制备出非晶态CPP/晶态β-TCP新型双相磷酸钙生物陶瓷,研究了CPP的含量和煅烧温度对其相组分、烧结性能和力学性能的影响.结果表明,高温下HA与CPP反应生成β-磷酸三钙(β-TCP)和水。当初始原料中CPP的含量(质量分数,下同)高于10%时,可制备出新型双相磷酸钙生物陶瓷CPP/β-TCP;当CPP的含量低于10%时,可制备出以HA/β-TCP为主相的复相陶瓷。在CPP含量为0-15%、煅烧温度高于1250℃或CPP含量为15%-30%、煅烧温度为1150-1250℃的条件下,都可制备出抗压强度较高的复相磷酸钙陶瓷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号